约简在大型数据库模式识别中的应用

I. Perfilieva, P. Hurtík
{"title":"约简在大型数据库模式识别中的应用","authors":"I. Perfilieva, P. Hurtík","doi":"10.1109/SSCI.2018.8628802","DOIUrl":null,"url":null,"abstract":"Two distinguished properties of the F-transform: the best approximation in a local sense and the reduction in dimension imply the fact that the F-transform has many successful applications. In the first part, we propose another way of computing the F-transform components of a functional data. This way is based on the particular dimensionality reduction algorithm named Laplacian eigenmaps. In the second part, we strengthen the effect of F-transform-based dimensionality reduction by applying the PCA reduction method over the $F^{0}-$ or $F^{1}-$ transform results. We demonstrate the efficiency of the proposed combinations $F^{0}zT+PCA$ and $F^{1}zT+PCA$ on the problem of patter recognition in a large database. We compare both combinations with other relevant techniques (besides other, LENET-like CNN) and show that they outperform them from the computation time and success rate points of view.","PeriodicalId":235735,"journal":{"name":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reduction with Application to Pattern Recognition in Large Databases\",\"authors\":\"I. Perfilieva, P. Hurtík\",\"doi\":\"10.1109/SSCI.2018.8628802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two distinguished properties of the F-transform: the best approximation in a local sense and the reduction in dimension imply the fact that the F-transform has many successful applications. In the first part, we propose another way of computing the F-transform components of a functional data. This way is based on the particular dimensionality reduction algorithm named Laplacian eigenmaps. In the second part, we strengthen the effect of F-transform-based dimensionality reduction by applying the PCA reduction method over the $F^{0}-$ or $F^{1}-$ transform results. We demonstrate the efficiency of the proposed combinations $F^{0}zT+PCA$ and $F^{1}zT+PCA$ on the problem of patter recognition in a large database. We compare both combinations with other relevant techniques (besides other, LENET-like CNN) and show that they outperform them from the computation time and success rate points of view.\",\"PeriodicalId\":235735,\"journal\":{\"name\":\"2018 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI.2018.8628802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2018.8628802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

f变换的两个显著性质:局部意义上的最佳逼近和维数的降维意味着f变换有许多成功的应用。在第一部分中,我们提出了计算函数数据的f变换分量的另一种方法。这种方法是基于一种特殊的降维算法——拉普拉斯特征映射。在第二部分中,我们通过在$F^{1}-$或$F^{1}-$变换结果上应用PCA约简方法来加强基于F变换的降维效果。我们证明了所提出的组合$F^{1}zT+PCA$和$F^{1}zT+PCA$在大型数据库中的模式识别问题上的效率。我们将这两种组合与其他相关技术(除了其他,LENET-like CNN)进行比较,并表明它们从计算时间和成功率的角度来看都优于它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduction with Application to Pattern Recognition in Large Databases
Two distinguished properties of the F-transform: the best approximation in a local sense and the reduction in dimension imply the fact that the F-transform has many successful applications. In the first part, we propose another way of computing the F-transform components of a functional data. This way is based on the particular dimensionality reduction algorithm named Laplacian eigenmaps. In the second part, we strengthen the effect of F-transform-based dimensionality reduction by applying the PCA reduction method over the $F^{0}-$ or $F^{1}-$ transform results. We demonstrate the efficiency of the proposed combinations $F^{0}zT+PCA$ and $F^{1}zT+PCA$ on the problem of patter recognition in a large database. We compare both combinations with other relevant techniques (besides other, LENET-like CNN) and show that they outperform them from the computation time and success rate points of view.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信