生物成像中分形过程的创新建模与小波分析

P. D. Tafti, D. Ville, M. Unser
{"title":"生物成像中分形过程的创新建模与小波分析","authors":"P. D. Tafti, D. Ville, M. Unser","doi":"10.1109/ISBI.2008.4541293","DOIUrl":null,"url":null,"abstract":"Growth and form in biology are often associated with some level of fractality. Fractal characteristics have also been noted in a number of imaging modalities. These observations make fractal modelling relevant in the context of bio-imaging. In this paper, we introduce a simple and yet rigorous innovation model for multi-dimensional fractional Brownian motion (fBm) and provide the computational tools for the analysis of such processes in a multi-resolution framework. The key point is that these processes can be whitened by application of the appropriate fractional Lapla-cian operator which has a corresponding polyharmonic wavelet. We examine the case of MRI and mammography images through comparison with theoretical results, which underline the suitability of fractal models in the study of bio-textures.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Innovation modelling and wavelet analysis of fractal processes in bio-imaging\",\"authors\":\"P. D. Tafti, D. Ville, M. Unser\",\"doi\":\"10.1109/ISBI.2008.4541293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Growth and form in biology are often associated with some level of fractality. Fractal characteristics have also been noted in a number of imaging modalities. These observations make fractal modelling relevant in the context of bio-imaging. In this paper, we introduce a simple and yet rigorous innovation model for multi-dimensional fractional Brownian motion (fBm) and provide the computational tools for the analysis of such processes in a multi-resolution framework. The key point is that these processes can be whitened by application of the appropriate fractional Lapla-cian operator which has a corresponding polyharmonic wavelet. We examine the case of MRI and mammography images through comparison with theoretical results, which underline the suitability of fractal models in the study of bio-textures.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

生物学中的生长和形态通常与某种程度的分形有关。在许多成像方式中也注意到分形特征。这些观察结果使得分形建模与生物成像相关。本文介绍了一个简单而严谨的多维分数布朗运动(fBm)创新模型,并提供了在多分辨率框架下分析这一过程的计算工具。关键是这些过程可以通过适当的分数阶拉普拉斯算子进行白化,该算子具有相应的多谐小波。我们通过与理论结果的比较来研究MRI和乳房x线摄影图像的情况,这强调了分形模型在生物纹理研究中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Innovation modelling and wavelet analysis of fractal processes in bio-imaging
Growth and form in biology are often associated with some level of fractality. Fractal characteristics have also been noted in a number of imaging modalities. These observations make fractal modelling relevant in the context of bio-imaging. In this paper, we introduce a simple and yet rigorous innovation model for multi-dimensional fractional Brownian motion (fBm) and provide the computational tools for the analysis of such processes in a multi-resolution framework. The key point is that these processes can be whitened by application of the appropriate fractional Lapla-cian operator which has a corresponding polyharmonic wavelet. We examine the case of MRI and mammography images through comparison with theoretical results, which underline the suitability of fractal models in the study of bio-textures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信