时变滤波器组的逆时反演

Tsuhan Chen, P. Vaidyanathan
{"title":"时变滤波器组的逆时反演","authors":"Tsuhan Chen, P. Vaidyanathan","doi":"10.1109/ACSSC.1993.342469","DOIUrl":null,"url":null,"abstract":"For an analysis/synthesis filter bank to achieve perfect reconstruction, the synthesis polyphase matrix should be equal to an inverse of the analysis polyphase matrix E(z). Therefore, the problem of perfect reconstruction filter banks is same as the inversion of the multi-input multi-output transfer function E(z). Using state-space notations, it has been shown that the inversion can be achieved by using time-reversed filters given proper initial conditions. In this paper, we extend the idea of time-reversed inversion to the case of time-varying filter banks. Using the state-space framework, we show perfect reconstruction is always guaranteed, no matter how often the filter bank varies with time. This framework covers both maximally-decimated filter banks and under-decimated ones. We also show how the overhead of transmitting initial conditions can be avoided.<<ETX>>","PeriodicalId":266447,"journal":{"name":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Time-reversed inversion for time-varying filter banks\",\"authors\":\"Tsuhan Chen, P. Vaidyanathan\",\"doi\":\"10.1109/ACSSC.1993.342469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an analysis/synthesis filter bank to achieve perfect reconstruction, the synthesis polyphase matrix should be equal to an inverse of the analysis polyphase matrix E(z). Therefore, the problem of perfect reconstruction filter banks is same as the inversion of the multi-input multi-output transfer function E(z). Using state-space notations, it has been shown that the inversion can be achieved by using time-reversed filters given proper initial conditions. In this paper, we extend the idea of time-reversed inversion to the case of time-varying filter banks. Using the state-space framework, we show perfect reconstruction is always guaranteed, no matter how often the filter bank varies with time. This framework covers both maximally-decimated filter banks and under-decimated ones. We also show how the overhead of transmitting initial conditions can be avoided.<<ETX>>\",\"PeriodicalId\":266447,\"journal\":{\"name\":\"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.1993.342469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1993.342469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

为了使分析/合成滤波器组实现完美的重构,合成多相矩阵应该等于分析多相矩阵E(z)的逆。因此,完美重构滤波器组的问题与多输入多输出传递函数E(z)的反演问题相同。利用状态空间符号表明,在给定适当的初始条件下,使用时间反转滤波器可以实现反转。在本文中,我们将时间逆反演的思想推广到时变滤波器组的情况。利用状态空间框架,无论滤波器组随时间变化的频率如何,都能保证完美的重构。该框架涵盖最大抽取滤波器组和不足抽取滤波器组。我们还展示了如何避免传输初始条件的开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-reversed inversion for time-varying filter banks
For an analysis/synthesis filter bank to achieve perfect reconstruction, the synthesis polyphase matrix should be equal to an inverse of the analysis polyphase matrix E(z). Therefore, the problem of perfect reconstruction filter banks is same as the inversion of the multi-input multi-output transfer function E(z). Using state-space notations, it has been shown that the inversion can be achieved by using time-reversed filters given proper initial conditions. In this paper, we extend the idea of time-reversed inversion to the case of time-varying filter banks. Using the state-space framework, we show perfect reconstruction is always guaranteed, no matter how often the filter bank varies with time. This framework covers both maximally-decimated filter banks and under-decimated ones. We also show how the overhead of transmitting initial conditions can be avoided.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信