D. Ağaoğulları, Ö. Balcı, S. Mertdinç, Emre Tekoğlu, M. Öveçoğlu
{"title":"粉末冶金法制备VB2-V3B4-V2B3/VC杂化粉体","authors":"D. Ağaoğulları, Ö. Balcı, S. Mertdinç, Emre Tekoğlu, M. Öveçoğlu","doi":"10.30728/BORON.441148","DOIUrl":null,"url":null,"abstract":"The present study reports the in-situ synthesis of hybrid powders containing vanadium borides (VB 2 , V 3 B 4 and V 2 B 3 ) and vanadium carbide (VC) using powder metallurgy methods. VB 2 -V 3 B 4 -V 2 B 3 /VC hybrid powders were synthesized from V 2 O 5 , B 2 O 3 and C powder blends via a carbothermal reduction route assisted by mechanical milling. Powder blends were mechanically milled up to 5 h in a high-energy ball mill. The milling process reduced the crystallite size, increased the uniformity of the particle distribution and hence increased the reactivity of the starting powders. As-blended and milled powders were annealed at different temperatures (1400, 1500 and 1600°C) for 12 h to investigate the probability of achieving vanadium boride and carbide phases simultaneously. Annealed powders were characterized using X-ray diffractometer (XRD), scanning electron microscope/energy dispersive spectrometer (SEM/EDS) and particle size analyzer. In case of using annealing temperature of 1400°C, VB 2 -V 3 B 4 -V 2 B 3 /VC hybrid powders were obtained with an amount of unreacted V 2 O 5 . Annealing temperatures of 1500 and 1600 ° C resulted in the formation of VB 2 , V 3 B 4 , V 2 B 3 and VC phases. Milling affected the weight percentages of the phases as well as the type of major boride phase.","PeriodicalId":431027,"journal":{"name":"Journal of Boron","volume":"109 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis of VB2-V3B4-V2B3/VC hybrid powders via powder metallurgy processes\",\"authors\":\"D. Ağaoğulları, Ö. Balcı, S. Mertdinç, Emre Tekoğlu, M. Öveçoğlu\",\"doi\":\"10.30728/BORON.441148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study reports the in-situ synthesis of hybrid powders containing vanadium borides (VB 2 , V 3 B 4 and V 2 B 3 ) and vanadium carbide (VC) using powder metallurgy methods. VB 2 -V 3 B 4 -V 2 B 3 /VC hybrid powders were synthesized from V 2 O 5 , B 2 O 3 and C powder blends via a carbothermal reduction route assisted by mechanical milling. Powder blends were mechanically milled up to 5 h in a high-energy ball mill. The milling process reduced the crystallite size, increased the uniformity of the particle distribution and hence increased the reactivity of the starting powders. As-blended and milled powders were annealed at different temperatures (1400, 1500 and 1600°C) for 12 h to investigate the probability of achieving vanadium boride and carbide phases simultaneously. Annealed powders were characterized using X-ray diffractometer (XRD), scanning electron microscope/energy dispersive spectrometer (SEM/EDS) and particle size analyzer. In case of using annealing temperature of 1400°C, VB 2 -V 3 B 4 -V 2 B 3 /VC hybrid powders were obtained with an amount of unreacted V 2 O 5 . Annealing temperatures of 1500 and 1600 ° C resulted in the formation of VB 2 , V 3 B 4 , V 2 B 3 and VC phases. Milling affected the weight percentages of the phases as well as the type of major boride phase.\",\"PeriodicalId\":431027,\"journal\":{\"name\":\"Journal of Boron\",\"volume\":\"109 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Boron\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30728/BORON.441148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Boron","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30728/BORON.441148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of VB2-V3B4-V2B3/VC hybrid powders via powder metallurgy processes
The present study reports the in-situ synthesis of hybrid powders containing vanadium borides (VB 2 , V 3 B 4 and V 2 B 3 ) and vanadium carbide (VC) using powder metallurgy methods. VB 2 -V 3 B 4 -V 2 B 3 /VC hybrid powders were synthesized from V 2 O 5 , B 2 O 3 and C powder blends via a carbothermal reduction route assisted by mechanical milling. Powder blends were mechanically milled up to 5 h in a high-energy ball mill. The milling process reduced the crystallite size, increased the uniformity of the particle distribution and hence increased the reactivity of the starting powders. As-blended and milled powders were annealed at different temperatures (1400, 1500 and 1600°C) for 12 h to investigate the probability of achieving vanadium boride and carbide phases simultaneously. Annealed powders were characterized using X-ray diffractometer (XRD), scanning electron microscope/energy dispersive spectrometer (SEM/EDS) and particle size analyzer. In case of using annealing temperature of 1400°C, VB 2 -V 3 B 4 -V 2 B 3 /VC hybrid powders were obtained with an amount of unreacted V 2 O 5 . Annealing temperatures of 1500 and 1600 ° C resulted in the formation of VB 2 , V 3 B 4 , V 2 B 3 and VC phases. Milling affected the weight percentages of the phases as well as the type of major boride phase.