通过Fenchel二元性分析短缺风险

Zhenyu Cui, Jun Deng
{"title":"通过Fenchel二元性分析短缺风险","authors":"Zhenyu Cui, Jun Deng","doi":"10.2139/ssrn.3128201","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Fenchel duality approach to study the minimization problem of the shortfall risk. We consider a general increasing and strictly convex loss function, which may be more general than the situation of convex risk measures usually assumed in the literature. We first translate the associated stochastic optimization problem to an equivalent static optimization problem, and then obtain the explicit structure of the optimal randomized test for both complete and incomplete markets. For the incomplete market case, to the best of our knowledge, we obtain for the first time the explicit randomized test, while previous literature only established the existence through the supermartingale optional decomposition approach. We also solve the shortfall risk minimization problem for an insider through the enlargement of filtrations approach.","PeriodicalId":187811,"journal":{"name":"ERN: Other Econometric Modeling: Capital Markets - Risk (Topic)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Shortfall Risk Through Fenchel Duality\",\"authors\":\"Zhenyu Cui, Jun Deng\",\"doi\":\"10.2139/ssrn.3128201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a Fenchel duality approach to study the minimization problem of the shortfall risk. We consider a general increasing and strictly convex loss function, which may be more general than the situation of convex risk measures usually assumed in the literature. We first translate the associated stochastic optimization problem to an equivalent static optimization problem, and then obtain the explicit structure of the optimal randomized test for both complete and incomplete markets. For the incomplete market case, to the best of our knowledge, we obtain for the first time the explicit randomized test, while previous literature only established the existence through the supermartingale optional decomposition approach. We also solve the shortfall risk minimization problem for an insider through the enlargement of filtrations approach.\",\"PeriodicalId\":187811,\"journal\":{\"name\":\"ERN: Other Econometric Modeling: Capital Markets - Risk (Topic)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometric Modeling: Capital Markets - Risk (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3128201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: Capital Markets - Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3128201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种Fenchel对偶方法来研究短缺风险的最小化问题。我们考虑一个一般递增的严格凸损失函数,它可能比文献中通常假设的凸风险测度的情况更一般。首先将相关的随机优化问题转化为等效的静态优化问题,然后得到完全市场和不完全市场的最优随机检验的显式结构。对于不完全市场案例,据我们所知,我们首次获得了显式随机检验,而以往的文献只是通过上鞅可选分解方法来确定存在性。我们还通过扩大过滤方法解决了内部人员的短缺风险最小化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shortfall Risk Through Fenchel Duality
In this paper, we propose a Fenchel duality approach to study the minimization problem of the shortfall risk. We consider a general increasing and strictly convex loss function, which may be more general than the situation of convex risk measures usually assumed in the literature. We first translate the associated stochastic optimization problem to an equivalent static optimization problem, and then obtain the explicit structure of the optimal randomized test for both complete and incomplete markets. For the incomplete market case, to the best of our knowledge, we obtain for the first time the explicit randomized test, while previous literature only established the existence through the supermartingale optional decomposition approach. We also solve the shortfall risk minimization problem for an insider through the enlargement of filtrations approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信