面向事件感知的城市交通预测系统

Zhaonan Wang, Renhe Jiang, Z. Fan, Xuan Song, R. Shibasaki
{"title":"面向事件感知的城市交通预测系统","authors":"Zhaonan Wang, Renhe Jiang, Z. Fan, Xuan Song, R. Shibasaki","doi":"10.1145/3539597.3575783","DOIUrl":null,"url":null,"abstract":"Today, thanks to the rapid developing mobile and sensor networks in IoT (Internet of Things) systems, spatio-temporal big data are being constantly generated. They have brought us a data-driven possibility to sense and understand crowd mobility on a city scale. A fundamental task towards the next-generation mobility services, such as Intelligent Transportation Systems (ITS), Mobility-as-a-Service (MaaS), is spatio-temporal predictive modeling of the geo-sensory signals. There is a recent line of research leveraging deep learning techniques to boost the forecasting performance on such tasks. While simulating the regularity of mobility behaviors (e.g., routines, periodicity) in a more sophisticated way, the existing studies ignore an important part of urban activities, i.e., events. Including holidays, extreme weathers, pandemic, accidents, various urban events happen from time to time and cause non-stationary phenomena, which by nature make the spatio-temporal forecasting task challenging. We thereby envision an event-aware urban mobility prediction model that is capable of fast adapting and making reliable predictions in different scenarios, which is crucial to decision making towards emergency response and urban resilience.","PeriodicalId":227804,"journal":{"name":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards an Event-Aware Urban Mobility Prediction System\",\"authors\":\"Zhaonan Wang, Renhe Jiang, Z. Fan, Xuan Song, R. Shibasaki\",\"doi\":\"10.1145/3539597.3575783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, thanks to the rapid developing mobile and sensor networks in IoT (Internet of Things) systems, spatio-temporal big data are being constantly generated. They have brought us a data-driven possibility to sense and understand crowd mobility on a city scale. A fundamental task towards the next-generation mobility services, such as Intelligent Transportation Systems (ITS), Mobility-as-a-Service (MaaS), is spatio-temporal predictive modeling of the geo-sensory signals. There is a recent line of research leveraging deep learning techniques to boost the forecasting performance on such tasks. While simulating the regularity of mobility behaviors (e.g., routines, periodicity) in a more sophisticated way, the existing studies ignore an important part of urban activities, i.e., events. Including holidays, extreme weathers, pandemic, accidents, various urban events happen from time to time and cause non-stationary phenomena, which by nature make the spatio-temporal forecasting task challenging. We thereby envision an event-aware urban mobility prediction model that is capable of fast adapting and making reliable predictions in different scenarios, which is crucial to decision making towards emergency response and urban resilience.\",\"PeriodicalId\":227804,\"journal\":{\"name\":\"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3539597.3575783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539597.3575783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

今天,由于物联网系统中移动和传感器网络的快速发展,时空大数据不断产生。它们为我们带来了一种数据驱动的可能性,可以感知和理解城市规模的人群流动。智能交通系统(ITS)、移动即服务(MaaS)等下一代移动服务的一项基本任务是对地理感知信号进行时空预测建模。最近有一项研究利用深度学习技术来提高这类任务的预测性能。现有的研究在较为复杂地模拟出行行为的规律性(例程性、周期性)的同时,忽略了城市活动的一个重要组成部分,即事件。节假日、极端天气、流行病、意外事故等各种城市事件的发生是时有发生的,并会引起非平稳现象,这在本质上给时空预测任务带来了挑战。因此,我们设想了一个事件感知的城市交通预测模型,该模型能够快速适应并在不同情况下做出可靠的预测,这对应急响应和城市复原力的决策至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards an Event-Aware Urban Mobility Prediction System
Today, thanks to the rapid developing mobile and sensor networks in IoT (Internet of Things) systems, spatio-temporal big data are being constantly generated. They have brought us a data-driven possibility to sense and understand crowd mobility on a city scale. A fundamental task towards the next-generation mobility services, such as Intelligent Transportation Systems (ITS), Mobility-as-a-Service (MaaS), is spatio-temporal predictive modeling of the geo-sensory signals. There is a recent line of research leveraging deep learning techniques to boost the forecasting performance on such tasks. While simulating the regularity of mobility behaviors (e.g., routines, periodicity) in a more sophisticated way, the existing studies ignore an important part of urban activities, i.e., events. Including holidays, extreme weathers, pandemic, accidents, various urban events happen from time to time and cause non-stationary phenomena, which by nature make the spatio-temporal forecasting task challenging. We thereby envision an event-aware urban mobility prediction model that is capable of fast adapting and making reliable predictions in different scenarios, which is crucial to decision making towards emergency response and urban resilience.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信