概率蕴涵和迭代条件

A. Gilio, N. Pfeifer, G. Sanfilippo
{"title":"概率蕴涵和迭代条件","authors":"A. Gilio, N. Pfeifer, G. Sanfilippo","doi":"10.4324/9781315111902-6","DOIUrl":null,"url":null,"abstract":"In this paper we exploit the notions of conjoined and iterated conditionals, which are defined in the setting of coherence by means of suitable conditional random quantities with values in the interval $[0,1]$. We examine the iterated conditional $(B|K)|(A|H)$, by showing that $A|H$ p-entails $B|K$ if and only if $(B|K)|(A|H) = 1$. Then, we show that a p-consistent family $\\mathcal{F}=\\{E_1|H_1,E_2|H_2\\}$ p-entails a conditional event $E_3|H_3$ if and only if $E_3|H_3=1$, or $(E_3|H_3)|QC(\\mathcal{S})=1$ for some nonempty subset $\\mathcal{S}$ of $\\mathcal{F}$, where $QC(\\mathcal{S})$ is the quasi conjunction of the conditional events in $\\mathcal{S}$. Then, we examine the inference rules $And$, $Cut$, $Cautious $ $Monotonicity$, and $Or$ of System~P and other well known inference rules ($Modus$ $Ponens$, $Modus$ $Tollens$, $Bayes$). We also show that $QC(\\mathcal{F})|\\mathcal{C}(\\mathcal{F})=1$, where $\\mathcal{C}(\\mathcal{F})$ is the conjunction of the conditional events in $\\mathcal{F}$. We characterize p-entailment by showing that $\\mathcal{F}$ p-entails $E_3|H_3$ if and only if $(E_3|H_3)|\\mathcal{C}(\\mathcal{F})=1$. Finally, we examine \\emph{Denial of the antecedent} and \\emph{Affirmation of the consequent}, where the p-entailment of $(E_3|H_3)$ from $\\mathcal{F}$ does not hold, by showing that $(E_3|H_3)|\\mathcal{C}(\\mathcal{F})\\neq1.$","PeriodicalId":355260,"journal":{"name":"Logic and Uncertainty in the Human Mind","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Probabilistic entailment and iterated conditionals\",\"authors\":\"A. Gilio, N. Pfeifer, G. Sanfilippo\",\"doi\":\"10.4324/9781315111902-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we exploit the notions of conjoined and iterated conditionals, which are defined in the setting of coherence by means of suitable conditional random quantities with values in the interval $[0,1]$. We examine the iterated conditional $(B|K)|(A|H)$, by showing that $A|H$ p-entails $B|K$ if and only if $(B|K)|(A|H) = 1$. Then, we show that a p-consistent family $\\\\mathcal{F}=\\\\{E_1|H_1,E_2|H_2\\\\}$ p-entails a conditional event $E_3|H_3$ if and only if $E_3|H_3=1$, or $(E_3|H_3)|QC(\\\\mathcal{S})=1$ for some nonempty subset $\\\\mathcal{S}$ of $\\\\mathcal{F}$, where $QC(\\\\mathcal{S})$ is the quasi conjunction of the conditional events in $\\\\mathcal{S}$. Then, we examine the inference rules $And$, $Cut$, $Cautious $ $Monotonicity$, and $Or$ of System~P and other well known inference rules ($Modus$ $Ponens$, $Modus$ $Tollens$, $Bayes$). We also show that $QC(\\\\mathcal{F})|\\\\mathcal{C}(\\\\mathcal{F})=1$, where $\\\\mathcal{C}(\\\\mathcal{F})$ is the conjunction of the conditional events in $\\\\mathcal{F}$. We characterize p-entailment by showing that $\\\\mathcal{F}$ p-entails $E_3|H_3$ if and only if $(E_3|H_3)|\\\\mathcal{C}(\\\\mathcal{F})=1$. Finally, we examine \\\\emph{Denial of the antecedent} and \\\\emph{Affirmation of the consequent}, where the p-entailment of $(E_3|H_3)$ from $\\\\mathcal{F}$ does not hold, by showing that $(E_3|H_3)|\\\\mathcal{C}(\\\\mathcal{F})\\\\neq1.$\",\"PeriodicalId\":355260,\"journal\":{\"name\":\"Logic and Uncertainty in the Human Mind\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic and Uncertainty in the Human Mind\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4324/9781315111902-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic and Uncertainty in the Human Mind","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4324/9781315111902-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文利用区间内的合适的条件随机量,给出了在相干集中定义的连接条件和迭代条件的概念 $[0,1]$. 我们检查迭代条件 $(B|K)|(A|H)$通过展示 $A|H$ p-蕴涵 $B|K$ 当且仅当 $(B|K)|(A|H) = 1$. 然后,我们证明了p一致族 $\mathcal{F}=\{E_1|H_1,E_2|H_2\}$ p包含一个条件事件 $E_3|H_3$ 当且仅当 $E_3|H_3=1$,或 $(E_3|H_3)|QC(\mathcal{S})=1$ 对于某个非空子集 $\mathcal{S}$ 的 $\mathcal{F}$,其中 $QC(\mathcal{S})$ 条件事件的拟合在里面吗 $\mathcal{S}$. 然后,我们检查推理规则 $And$, $Cut$, $Cautious $ $Monotonicity$,和 $Or$ 系统P和其他众所周知的推理规则($Modus$ $Ponens$, $Modus$ $Tollens$, $Bayes$). 我们也证明了 $QC(\mathcal{F})|\mathcal{C}(\mathcal{F})=1$,其中 $\mathcal{C}(\mathcal{F})$ 条件事件的连词是in吗 $\mathcal{F}$. 我们用这个来描述p蕴涵 $\mathcal{F}$ p-蕴涵 $E_3|H_3$ 当且仅当 $(E_3|H_3)|\mathcal{C}(\mathcal{F})=1$. 最后,我们检查 \emph{否认先决条件} 和 \emph{结论的肯定},其中p的蕴涵 $(E_3|H_3)$ 从 $\mathcal{F}$ 不成立吗 $(E_3|H_3)|\mathcal{C}(\mathcal{F})\neq1.$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic entailment and iterated conditionals
In this paper we exploit the notions of conjoined and iterated conditionals, which are defined in the setting of coherence by means of suitable conditional random quantities with values in the interval $[0,1]$. We examine the iterated conditional $(B|K)|(A|H)$, by showing that $A|H$ p-entails $B|K$ if and only if $(B|K)|(A|H) = 1$. Then, we show that a p-consistent family $\mathcal{F}=\{E_1|H_1,E_2|H_2\}$ p-entails a conditional event $E_3|H_3$ if and only if $E_3|H_3=1$, or $(E_3|H_3)|QC(\mathcal{S})=1$ for some nonempty subset $\mathcal{S}$ of $\mathcal{F}$, where $QC(\mathcal{S})$ is the quasi conjunction of the conditional events in $\mathcal{S}$. Then, we examine the inference rules $And$, $Cut$, $Cautious $ $Monotonicity$, and $Or$ of System~P and other well known inference rules ($Modus$ $Ponens$, $Modus$ $Tollens$, $Bayes$). We also show that $QC(\mathcal{F})|\mathcal{C}(\mathcal{F})=1$, where $\mathcal{C}(\mathcal{F})$ is the conjunction of the conditional events in $\mathcal{F}$. We characterize p-entailment by showing that $\mathcal{F}$ p-entails $E_3|H_3$ if and only if $(E_3|H_3)|\mathcal{C}(\mathcal{F})=1$. Finally, we examine \emph{Denial of the antecedent} and \emph{Affirmation of the consequent}, where the p-entailment of $(E_3|H_3)$ from $\mathcal{F}$ does not hold, by showing that $(E_3|H_3)|\mathcal{C}(\mathcal{F})\neq1.$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信