{"title":"有效的空闲资源分配,从网络组件故障中快速恢复实时通道","authors":"Seungjae Han, K. Shin","doi":"10.1109/REAL.1997.641273","DOIUrl":null,"url":null,"abstract":"Since real-time applications usually require not only timeliness but also fault-tolerance, it is essential to incorporate fault-tolerance into real-time communication services that are indispensable to distributed real-time applications. The techniques for failure recovery in datagram communication are not adequate for real-time communication, because they cannot provide recovery-delay guarantees. To ensure fast recovery of a real-time channel from network component failures, we need to reserve network resources (spare resources) along a backup route before failures actually occur. The focus of this paper is on minimizing the amount of spare resources while meeting the fault-tolerance requirement. Specifically, we present resource sharing mechanisms and backup-route selection algorithms, and evaluate their efficiency with extensive simulations.","PeriodicalId":231201,"journal":{"name":"Proceedings Real-Time Systems Symposium","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Efficient spare-resource allocation for fast restoration of real-time channels from network component failures\",\"authors\":\"Seungjae Han, K. Shin\",\"doi\":\"10.1109/REAL.1997.641273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since real-time applications usually require not only timeliness but also fault-tolerance, it is essential to incorporate fault-tolerance into real-time communication services that are indispensable to distributed real-time applications. The techniques for failure recovery in datagram communication are not adequate for real-time communication, because they cannot provide recovery-delay guarantees. To ensure fast recovery of a real-time channel from network component failures, we need to reserve network resources (spare resources) along a backup route before failures actually occur. The focus of this paper is on minimizing the amount of spare resources while meeting the fault-tolerance requirement. Specifically, we present resource sharing mechanisms and backup-route selection algorithms, and evaluate their efficiency with extensive simulations.\",\"PeriodicalId\":231201,\"journal\":{\"name\":\"Proceedings Real-Time Systems Symposium\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Real-Time Systems Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/REAL.1997.641273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Real-Time Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REAL.1997.641273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient spare-resource allocation for fast restoration of real-time channels from network component failures
Since real-time applications usually require not only timeliness but also fault-tolerance, it is essential to incorporate fault-tolerance into real-time communication services that are indispensable to distributed real-time applications. The techniques for failure recovery in datagram communication are not adequate for real-time communication, because they cannot provide recovery-delay guarantees. To ensure fast recovery of a real-time channel from network component failures, we need to reserve network resources (spare resources) along a backup route before failures actually occur. The focus of this paper is on minimizing the amount of spare resources while meeting the fault-tolerance requirement. Specifically, we present resource sharing mechanisms and backup-route selection algorithms, and evaluate their efficiency with extensive simulations.