进化模糊神经网络

R. J. Machado, A. Freitas da Rocha
{"title":"进化模糊神经网络","authors":"R. J. Machado, A. Freitas da Rocha","doi":"10.1109/FUZZY.1992.258663","DOIUrl":null,"url":null,"abstract":"The authors describe the combination of fuzzy neural networks with genetic algorithms, producing a flexible and powerful learning paradigm, called evolutive learning. Evolutive learning combines as complementary tools both inductive learning through synaptic weight adjustment and deductive learning through the modification of the network topology to obtain the automatic adaptation of system knowledge to the problem domain environment. Algorithms for the development of an evolutive learning machine are presented. A fuzzy criterion based on entropy is proposed to select the architecture for a fuzzy neural network best suited to a specific problem domain.<<ETX>>","PeriodicalId":222263,"journal":{"name":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Evolutive fuzzy neural networks\",\"authors\":\"R. J. Machado, A. Freitas da Rocha\",\"doi\":\"10.1109/FUZZY.1992.258663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors describe the combination of fuzzy neural networks with genetic algorithms, producing a flexible and powerful learning paradigm, called evolutive learning. Evolutive learning combines as complementary tools both inductive learning through synaptic weight adjustment and deductive learning through the modification of the network topology to obtain the automatic adaptation of system knowledge to the problem domain environment. Algorithms for the development of an evolutive learning machine are presented. A fuzzy criterion based on entropy is proposed to select the architecture for a fuzzy neural network best suited to a specific problem domain.<<ETX>>\",\"PeriodicalId\":222263,\"journal\":{\"name\":\"[1992 Proceedings] IEEE International Conference on Fuzzy Systems\",\"volume\":\"175 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992 Proceedings] IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.1992.258663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1992.258663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

作者描述了模糊神经网络与遗传算法的结合,产生了一种灵活而强大的学习范式,称为进化学习。进化学习将通过突触权值调整的归纳学习和通过修改网络拓扑的演绎学习作为互补的工具相结合,以获得系统知识对问题域环境的自动适应。提出了一种开发进化学习机的算法。提出了一种基于熵的模糊准则来选择最适合特定问题域的模糊神经网络结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutive fuzzy neural networks
The authors describe the combination of fuzzy neural networks with genetic algorithms, producing a flexible and powerful learning paradigm, called evolutive learning. Evolutive learning combines as complementary tools both inductive learning through synaptic weight adjustment and deductive learning through the modification of the network topology to obtain the automatic adaptation of system knowledge to the problem domain environment. Algorithms for the development of an evolutive learning machine are presented. A fuzzy criterion based on entropy is proposed to select the architecture for a fuzzy neural network best suited to a specific problem domain.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信