基于MobileNet的Lontar手稿巴厘文字识别迁移学习

Ni Putu Sutramiani, N. Suciati, D. Siahaan
{"title":"基于MobileNet的Lontar手稿巴厘文字识别迁移学习","authors":"Ni Putu Sutramiani, N. Suciati, D. Siahaan","doi":"10.1109/ICICoS51170.2020.9299030","DOIUrl":null,"url":null,"abstract":"The Balinese lontar manuscripts are cultural heritage written using Balinese characters on dried palm leaves. The conservation of the lontar manuscript is carried out by understanding the meaning contained in it. This research is the first step in the conservation of the lontar manuscript by recognizing Balinese characters. In this study, we recognized Balinese characters on lontar using a transfer learning approach. Transfer learning is done by fine-tuning the number of parameters of the pre-trained model to speed up the model convergence by modifying the number of trainable parameters on the pre-trained model. We modified the number of MobileNet architecture parameters with varying the number of trainable parameters and three optimizers to produce the best performance model. Based on the experimental result, the best recognition model yields 86.23% accuracy with a combination of SGD optimizer and 60% trainable parameters.","PeriodicalId":122803,"journal":{"name":"2020 4th International Conference on Informatics and Computational Sciences (ICICoS)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Transfer Learning on Balinese Character Recognition of Lontar Manuscript Using MobileNet\",\"authors\":\"Ni Putu Sutramiani, N. Suciati, D. Siahaan\",\"doi\":\"10.1109/ICICoS51170.2020.9299030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Balinese lontar manuscripts are cultural heritage written using Balinese characters on dried palm leaves. The conservation of the lontar manuscript is carried out by understanding the meaning contained in it. This research is the first step in the conservation of the lontar manuscript by recognizing Balinese characters. In this study, we recognized Balinese characters on lontar using a transfer learning approach. Transfer learning is done by fine-tuning the number of parameters of the pre-trained model to speed up the model convergence by modifying the number of trainable parameters on the pre-trained model. We modified the number of MobileNet architecture parameters with varying the number of trainable parameters and three optimizers to produce the best performance model. Based on the experimental result, the best recognition model yields 86.23% accuracy with a combination of SGD optimizer and 60% trainable parameters.\",\"PeriodicalId\":122803,\"journal\":{\"name\":\"2020 4th International Conference on Informatics and Computational Sciences (ICICoS)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th International Conference on Informatics and Computational Sciences (ICICoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICoS51170.2020.9299030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th International Conference on Informatics and Computational Sciences (ICICoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICoS51170.2020.9299030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

巴厘lontar手稿是用巴厘文字写在干棕榈叶上的文化遗产。lontar手稿的保存是通过理解它所包含的含义来进行的。本研究是通过识别巴厘文字来保存龙塔手稿的第一步。在本研究中,我们使用迁移学习方法在lontar上识别巴厘文字。迁移学习是通过微调预训练模型的参数数量来实现的,通过修改预训练模型上可训练参数的数量来加快模型的收敛速度。我们通过改变可训练参数的数量和三个优化器来修改MobileNet架构参数的数量,以产生最佳性能模型。实验结果表明,在SGD优化器和60%可训练参数的组合下,最佳识别模型的准确率为86.23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer Learning on Balinese Character Recognition of Lontar Manuscript Using MobileNet
The Balinese lontar manuscripts are cultural heritage written using Balinese characters on dried palm leaves. The conservation of the lontar manuscript is carried out by understanding the meaning contained in it. This research is the first step in the conservation of the lontar manuscript by recognizing Balinese characters. In this study, we recognized Balinese characters on lontar using a transfer learning approach. Transfer learning is done by fine-tuning the number of parameters of the pre-trained model to speed up the model convergence by modifying the number of trainable parameters on the pre-trained model. We modified the number of MobileNet architecture parameters with varying the number of trainable parameters and three optimizers to produce the best performance model. Based on the experimental result, the best recognition model yields 86.23% accuracy with a combination of SGD optimizer and 60% trainable parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信