{"title":"基于椭球地球模型的弹道目标拦截仿真与分析","authors":"Ying Hao, Xiaolin Meng","doi":"10.1109/CPGPS.2017.8075123","DOIUrl":null,"url":null,"abstract":"For most of the external atmosphere flight, ballistic target trajectory has special characteristics like long-time and long-range. In this paper, the ellipsoidal earth model is taken into consideration for discussing the problem of two-dimensional engagement between the target and the interceptor, where atmosphere effect is neglected. By the presentation methods of operational area and launch area denied, formulae are deduced and simulations results are shown. Comparison is made with the one which has condition of round earth model.","PeriodicalId":340067,"journal":{"name":"2017 Forum on Cooperative Positioning and Service (CPGPS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ballistic target interception simulation and analysis based on ellipsoidal earth model\",\"authors\":\"Ying Hao, Xiaolin Meng\",\"doi\":\"10.1109/CPGPS.2017.8075123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For most of the external atmosphere flight, ballistic target trajectory has special characteristics like long-time and long-range. In this paper, the ellipsoidal earth model is taken into consideration for discussing the problem of two-dimensional engagement between the target and the interceptor, where atmosphere effect is neglected. By the presentation methods of operational area and launch area denied, formulae are deduced and simulations results are shown. Comparison is made with the one which has condition of round earth model.\",\"PeriodicalId\":340067,\"journal\":{\"name\":\"2017 Forum on Cooperative Positioning and Service (CPGPS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Forum on Cooperative Positioning and Service (CPGPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CPGPS.2017.8075123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Forum on Cooperative Positioning and Service (CPGPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPGPS.2017.8075123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ballistic target interception simulation and analysis based on ellipsoidal earth model
For most of the external atmosphere flight, ballistic target trajectory has special characteristics like long-time and long-range. In this paper, the ellipsoidal earth model is taken into consideration for discussing the problem of two-dimensional engagement between the target and the interceptor, where atmosphere effect is neglected. By the presentation methods of operational area and launch area denied, formulae are deduced and simulations results are shown. Comparison is made with the one which has condition of round earth model.