基于单目视觉与稀疏模式距离数据融合的翻滚目标重建与位姿估计

J. Padial, M. Hammond, S. Augenstein, S. Rock
{"title":"基于单目视觉与稀疏模式距离数据融合的翻滚目标重建与位姿估计","authors":"J. Padial, M. Hammond, S. Augenstein, S. Rock","doi":"10.1109/MFI.2012.6343026","DOIUrl":null,"url":null,"abstract":"A framework for 3D target reconstruction and relative pose estimation through fusion of vision and sparse-pattern range data (e.g. line-scanning LIDAR) is presented. The algorithm augments previous work in monocular vision-only SLAM/SfM to incorporate range data into the overall solution. The aim of this work is to enable a more dense reconstruction with accurate relative pose estimation that is unambiguous in scale. In order to incorporate range data, a linear estimator is presented to estimate the overall scale factor using vision-range correspondence. A motivating mission is the use of resource-constrained micro- and nano-satellites to perform autonomous rendezvous and docking operations with uncommunicative, tumbling targets, about which little or no prior information is available. The rationale for the approach is explained, and an algorithm is presented. The implementation using a modified Rao-Blackwellised particle filter is described and tested. Results from numerical simulations are presented that demonstrate the performance and viability of the approach.","PeriodicalId":103145,"journal":{"name":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Tumbling target reconstruction and pose estimation through fusion of monocular vision and sparse-pattern range data\",\"authors\":\"J. Padial, M. Hammond, S. Augenstein, S. Rock\",\"doi\":\"10.1109/MFI.2012.6343026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A framework for 3D target reconstruction and relative pose estimation through fusion of vision and sparse-pattern range data (e.g. line-scanning LIDAR) is presented. The algorithm augments previous work in monocular vision-only SLAM/SfM to incorporate range data into the overall solution. The aim of this work is to enable a more dense reconstruction with accurate relative pose estimation that is unambiguous in scale. In order to incorporate range data, a linear estimator is presented to estimate the overall scale factor using vision-range correspondence. A motivating mission is the use of resource-constrained micro- and nano-satellites to perform autonomous rendezvous and docking operations with uncommunicative, tumbling targets, about which little or no prior information is available. The rationale for the approach is explained, and an algorithm is presented. The implementation using a modified Rao-Blackwellised particle filter is described and tested. Results from numerical simulations are presented that demonstrate the performance and viability of the approach.\",\"PeriodicalId\":103145,\"journal\":{\"name\":\"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2012.6343026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2012.6343026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种融合视觉和稀疏模式距离数据(如线扫描激光雷达)的三维目标重建和相对姿态估计框架。该算法增强了先前在单目视觉SLAM/SfM中的工作,将距离数据纳入整体解决方案。这项工作的目的是通过精确的相对姿态估计实现更密集的重建,并且在尺度上是明确的。为了融合距离数据,提出了一种利用视觉距离对应来估计整体尺度因子的线性估计方法。一项激励任务是利用资源受限的微卫星和纳米卫星与无法通信的翻滚目标执行自主交会和对接操作,这些目标很少或根本没有事先信息。解释了该方法的基本原理,并给出了一种算法。描述了一种改进的rao - blackwell化粒子滤波器的实现并进行了测试。数值模拟结果证明了该方法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tumbling target reconstruction and pose estimation through fusion of monocular vision and sparse-pattern range data
A framework for 3D target reconstruction and relative pose estimation through fusion of vision and sparse-pattern range data (e.g. line-scanning LIDAR) is presented. The algorithm augments previous work in monocular vision-only SLAM/SfM to incorporate range data into the overall solution. The aim of this work is to enable a more dense reconstruction with accurate relative pose estimation that is unambiguous in scale. In order to incorporate range data, a linear estimator is presented to estimate the overall scale factor using vision-range correspondence. A motivating mission is the use of resource-constrained micro- and nano-satellites to perform autonomous rendezvous and docking operations with uncommunicative, tumbling targets, about which little or no prior information is available. The rationale for the approach is explained, and an algorithm is presented. The implementation using a modified Rao-Blackwellised particle filter is described and tested. Results from numerical simulations are presented that demonstrate the performance and viability of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信