在动态定价环境下降低电力成本

E. López, C. Harris, Ivana Dusparic, S. Clarke, V. Cahill
{"title":"在动态定价环境下降低电力成本","authors":"E. López, C. Harris, Ivana Dusparic, S. Clarke, V. Cahill","doi":"10.1109/SmartGridComm.2012.6485978","DOIUrl":null,"url":null,"abstract":"Smart Grid technologies are becoming increasingly dynamic, so the use of computational intelligence is becoming more and more common to support the grid to automatically and intelligently respond to certain requests (e.g., reducing electricity costs giving a pricing history). In this work, we propose the use of a particular computational intelligence approach, denominated Distributed W-Learning, that aims to reduce electricity costs in a dynamic environment (e.g., changing prices over a period of time) by turning electric devices on (i.e., clothes dryer, electric vehicle) at residential level, at times when the electricity price is the lowest, while also, balancing the use of energy by avoiding turning on the devices at the same time. We make this problem as realistic as possible, by considering the use of real-world constraints (e.g., time to complete a task, boundary times within which a device can be used). Our results clearly indicate that the use of computational intelligence can be beneficial in this type of dynamic and complex problems.","PeriodicalId":143915,"journal":{"name":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Reducing electricity costs in a dynamic pricing environment\",\"authors\":\"E. López, C. Harris, Ivana Dusparic, S. Clarke, V. Cahill\",\"doi\":\"10.1109/SmartGridComm.2012.6485978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart Grid technologies are becoming increasingly dynamic, so the use of computational intelligence is becoming more and more common to support the grid to automatically and intelligently respond to certain requests (e.g., reducing electricity costs giving a pricing history). In this work, we propose the use of a particular computational intelligence approach, denominated Distributed W-Learning, that aims to reduce electricity costs in a dynamic environment (e.g., changing prices over a period of time) by turning electric devices on (i.e., clothes dryer, electric vehicle) at residential level, at times when the electricity price is the lowest, while also, balancing the use of energy by avoiding turning on the devices at the same time. We make this problem as realistic as possible, by considering the use of real-world constraints (e.g., time to complete a task, boundary times within which a device can be used). Our results clearly indicate that the use of computational intelligence can be beneficial in this type of dynamic and complex problems.\",\"PeriodicalId\":143915,\"journal\":{\"name\":\"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2012.6485978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2012.6485978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

智能电网技术正变得越来越动态,因此计算智能的使用正变得越来越普遍,以支持电网自动和智能地响应某些请求(例如,通过定价历史来降低电力成本)。在这项工作中,我们建议使用一种特定的计算智能方法,称为分布式w -学习,旨在通过在电价最低的时候打开住宅级的电力设备(即干衣机,电动汽车)来降低动态环境中的电力成本(例如,在一段时间内改变价格),同时通过避免同时打开设备来平衡能源的使用。通过考虑使用现实世界的约束(例如,完成任务的时间,可以使用设备的边界时间),我们使这个问题尽可能现实。我们的结果清楚地表明,计算智能的使用可以在这种类型的动态和复杂的问题是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing electricity costs in a dynamic pricing environment
Smart Grid technologies are becoming increasingly dynamic, so the use of computational intelligence is becoming more and more common to support the grid to automatically and intelligently respond to certain requests (e.g., reducing electricity costs giving a pricing history). In this work, we propose the use of a particular computational intelligence approach, denominated Distributed W-Learning, that aims to reduce electricity costs in a dynamic environment (e.g., changing prices over a period of time) by turning electric devices on (i.e., clothes dryer, electric vehicle) at residential level, at times when the electricity price is the lowest, while also, balancing the use of energy by avoiding turning on the devices at the same time. We make this problem as realistic as possible, by considering the use of real-world constraints (e.g., time to complete a task, boundary times within which a device can be used). Our results clearly indicate that the use of computational intelligence can be beneficial in this type of dynamic and complex problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信