Rakibul Hasan, C. Cheyre, Yong-Yeol Ahn, Roberto Hoyle, Apu Kapadia
{"title":"病毒式帖子对专业人士可见度和行为的影响:对Twitter上科学家的纵向研究","authors":"Rakibul Hasan, C. Cheyre, Yong-Yeol Ahn, Roberto Hoyle, Apu Kapadia","doi":"10.1609/icwsm.v16i1.19295","DOIUrl":null,"url":null,"abstract":"On social media, due to complex interactions between users' attention and recommendation algorithms, the visibility of users' posts can be unpredictable and vary wildly, sometimes creating unexpected viral events for `ordinary’ users. How do such events affect users' subsequent behaviors and long-term visibility on the platform? We investigate these questions following a matching-based framework using a dataset comprised of tweeting activities and follower graph changes of 17,157 scientists on Twitter. We identified scientists who experienced `unusual' virality for the first time in their profile lifespan (`viral' group) and quantified how viral events influence tweeting behaviors and popularity (as measured through follower statistics). After virality, the viral group increased tweeting frequency, their tweets became more objective and focused on fewer topics, and expressed more positive sentiment relative to their pre-virality tweets. Also, their post-virality tweets were more aligned with their professional expertise and similar to the viral tweet compared to past tweets. Finally, the viral group gained more followers in both the short and long terms compared to a control group.","PeriodicalId":175641,"journal":{"name":"International Conference on Web and Social Media","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Impact of Viral Posts on Visibility and Behavior of Professionals: A Longitudinal Study of Scientists on Twitter\",\"authors\":\"Rakibul Hasan, C. Cheyre, Yong-Yeol Ahn, Roberto Hoyle, Apu Kapadia\",\"doi\":\"10.1609/icwsm.v16i1.19295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On social media, due to complex interactions between users' attention and recommendation algorithms, the visibility of users' posts can be unpredictable and vary wildly, sometimes creating unexpected viral events for `ordinary’ users. How do such events affect users' subsequent behaviors and long-term visibility on the platform? We investigate these questions following a matching-based framework using a dataset comprised of tweeting activities and follower graph changes of 17,157 scientists on Twitter. We identified scientists who experienced `unusual' virality for the first time in their profile lifespan (`viral' group) and quantified how viral events influence tweeting behaviors and popularity (as measured through follower statistics). After virality, the viral group increased tweeting frequency, their tweets became more objective and focused on fewer topics, and expressed more positive sentiment relative to their pre-virality tweets. Also, their post-virality tweets were more aligned with their professional expertise and similar to the viral tweet compared to past tweets. Finally, the viral group gained more followers in both the short and long terms compared to a control group.\",\"PeriodicalId\":175641,\"journal\":{\"name\":\"International Conference on Web and Social Media\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Web and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icwsm.v16i1.19295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Web and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v16i1.19295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Impact of Viral Posts on Visibility and Behavior of Professionals: A Longitudinal Study of Scientists on Twitter
On social media, due to complex interactions between users' attention and recommendation algorithms, the visibility of users' posts can be unpredictable and vary wildly, sometimes creating unexpected viral events for `ordinary’ users. How do such events affect users' subsequent behaviors and long-term visibility on the platform? We investigate these questions following a matching-based framework using a dataset comprised of tweeting activities and follower graph changes of 17,157 scientists on Twitter. We identified scientists who experienced `unusual' virality for the first time in their profile lifespan (`viral' group) and quantified how viral events influence tweeting behaviors and popularity (as measured through follower statistics). After virality, the viral group increased tweeting frequency, their tweets became more objective and focused on fewer topics, and expressed more positive sentiment relative to their pre-virality tweets. Also, their post-virality tweets were more aligned with their professional expertise and similar to the viral tweet compared to past tweets. Finally, the viral group gained more followers in both the short and long terms compared to a control group.