Alexsandro Oliveira Alexandrino , Guilherme Henrique Santos Miranda , Carla Negri Lintzmayer , Zanoni Dias
{"title":"长度加权短重排排列排序的近似算法","authors":"Alexsandro Oliveira Alexandrino , Guilherme Henrique Santos Miranda , Carla Negri Lintzmayer , Zanoni Dias","doi":"10.1016/j.entcs.2019.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>Genome rearrangements are events that affect large portions of a genome. When using the rearrangement distance to compare two genomes, one wants to find a minimum cost sequence of rearrangements that transforms one into another. Since we represent genomes as permutations, we can reduce this problem to the problem of sorting a permutation with a minimum cost sequence of rearrangements. In the traditional approach, we consider that all rearrangements are equally likely to occur and we set a unitary cost for all rearrangements. However, there are two variations of the problem motivated by the observation that rearrangements involving large segments of a genome rarely occur. The first variation adds a restriction to the rearrangement's length. The second variation uses a cost function based on the rearrangement's length. In this work, we present approximation algorithms for five problems combining both variations, that is, problems with a length-limit restriction and a cost function based on the rearrangement's length.</p></div>","PeriodicalId":38770,"journal":{"name":"Electronic Notes in Theoretical Computer Science","volume":"346 ","pages":"Pages 29-40"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.entcs.2019.08.004","citationCount":"2","resultStr":"{\"title\":\"Approximation Algorithms for Sorting Permutations by Length-Weighted Short Rearrangements\",\"authors\":\"Alexsandro Oliveira Alexandrino , Guilherme Henrique Santos Miranda , Carla Negri Lintzmayer , Zanoni Dias\",\"doi\":\"10.1016/j.entcs.2019.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Genome rearrangements are events that affect large portions of a genome. When using the rearrangement distance to compare two genomes, one wants to find a minimum cost sequence of rearrangements that transforms one into another. Since we represent genomes as permutations, we can reduce this problem to the problem of sorting a permutation with a minimum cost sequence of rearrangements. In the traditional approach, we consider that all rearrangements are equally likely to occur and we set a unitary cost for all rearrangements. However, there are two variations of the problem motivated by the observation that rearrangements involving large segments of a genome rarely occur. The first variation adds a restriction to the rearrangement's length. The second variation uses a cost function based on the rearrangement's length. In this work, we present approximation algorithms for five problems combining both variations, that is, problems with a length-limit restriction and a cost function based on the rearrangement's length.</p></div>\",\"PeriodicalId\":38770,\"journal\":{\"name\":\"Electronic Notes in Theoretical Computer Science\",\"volume\":\"346 \",\"pages\":\"Pages 29-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.entcs.2019.08.004\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571066119300544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571066119300544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Approximation Algorithms for Sorting Permutations by Length-Weighted Short Rearrangements
Genome rearrangements are events that affect large portions of a genome. When using the rearrangement distance to compare two genomes, one wants to find a minimum cost sequence of rearrangements that transforms one into another. Since we represent genomes as permutations, we can reduce this problem to the problem of sorting a permutation with a minimum cost sequence of rearrangements. In the traditional approach, we consider that all rearrangements are equally likely to occur and we set a unitary cost for all rearrangements. However, there are two variations of the problem motivated by the observation that rearrangements involving large segments of a genome rarely occur. The first variation adds a restriction to the rearrangement's length. The second variation uses a cost function based on the rearrangement's length. In this work, we present approximation algorithms for five problems combining both variations, that is, problems with a length-limit restriction and a cost function based on the rearrangement's length.
期刊介绍:
ENTCS is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication and the availability on the electronic media is appropriate. Organizers of conferences whose proceedings appear in ENTCS, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.