一种基于流形学习算法的故障分类方法

Y. Guan, M. Kezunovic
{"title":"一种基于流形学习算法的故障分类方法","authors":"Y. Guan, M. Kezunovic","doi":"10.1109/ISAP.2011.6082193","DOIUrl":null,"url":null,"abstract":"This paper provides a novel solution for power system transmission line fault classification. It is based on Clarke-Concordia transform and manifold learning algorithm using one-end current signals. We first convert the currents into “α α 0” phases, and construct the trajectories in a 3-diemensional space. Manifold learning is used to extract characteristic features and identify different fault patterns. A weight factor is introduced in the neighborhood selection algorithm in manifold learning, which helps to solve the local nonlinear confusion problem. Fault pattern formed in 3-dimensional “α α 0” space better illustrate the fault's distortion and displacement from the normal state. Simulation results have proven the feasibility of this approach.","PeriodicalId":424662,"journal":{"name":"2011 16th International Conference on Intelligent System Applications to Power Systems","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel fault classification approach using manifold learning algorithm\",\"authors\":\"Y. Guan, M. Kezunovic\",\"doi\":\"10.1109/ISAP.2011.6082193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a novel solution for power system transmission line fault classification. It is based on Clarke-Concordia transform and manifold learning algorithm using one-end current signals. We first convert the currents into “α α 0” phases, and construct the trajectories in a 3-diemensional space. Manifold learning is used to extract characteristic features and identify different fault patterns. A weight factor is introduced in the neighborhood selection algorithm in manifold learning, which helps to solve the local nonlinear confusion problem. Fault pattern formed in 3-dimensional “α α 0” space better illustrate the fault's distortion and displacement from the normal state. Simulation results have proven the feasibility of this approach.\",\"PeriodicalId\":424662,\"journal\":{\"name\":\"2011 16th International Conference on Intelligent System Applications to Power Systems\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 16th International Conference on Intelligent System Applications to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP.2011.6082193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 16th International Conference on Intelligent System Applications to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2011.6082193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文为电力系统输电线路故障分类提供了一种新的解决方案。该算法基于clark - concordia变换和流形学习算法,采用一端电流信号。我们首先将电流转换为“α α 0”相,并在三维空间中构建轨迹。利用流形学习提取特征特征,识别不同的故障模式。在流形学习的邻域选择算法中引入权重因子,有助于解决局部非线性混淆问题。在三维“α α 0”空间中形成的断层模式更能说明断层偏离正常状态的变形和位移。仿真结果证明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel fault classification approach using manifold learning algorithm
This paper provides a novel solution for power system transmission line fault classification. It is based on Clarke-Concordia transform and manifold learning algorithm using one-end current signals. We first convert the currents into “α α 0” phases, and construct the trajectories in a 3-diemensional space. Manifold learning is used to extract characteristic features and identify different fault patterns. A weight factor is introduced in the neighborhood selection algorithm in manifold learning, which helps to solve the local nonlinear confusion problem. Fault pattern formed in 3-dimensional “α α 0” space better illustrate the fault's distortion and displacement from the normal state. Simulation results have proven the feasibility of this approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信