GraphRC

Wei Cheng, Chun-Feng Wu, Yuan-Hao Chang, Ing-Chao Lin
{"title":"GraphRC","authors":"Wei Cheng, Chun-Feng Wu, Yuan-Hao Chang, Ing-Chao Lin","doi":"10.1145/3508352.3549408","DOIUrl":null,"url":null,"abstract":"Architectural innovation in graph accelerators attracts research attention due to foreseeable inflation in data sizes and the irregular memory access pattern of graph algorithms. Conventional graph accelerators ignore the potential of Non-Volatile Memory (NVM) crossbar as a dual-addressing memory and treat it as a traditional single-addressing memory with higher density and better energy efficiency. In this work, we present GraphRC, a graph accelerator that leverages the power of dual-addressing memory by mapping in-edge/out-edge requests to column/row-oriented memory accesses. Although the capability of dual-addressing memory greatly improves the performance of graph processing, some memory accesses still suffer from low-utilization issues, Terefore, we propose a vertex merging (VM) method that improves cache block utilization rate by merging memory requests from consecutive vertices. VM reduces the execution time of all 6 graph algorithms on all 4 datasets by 24.24% on average. We then identify the data dependency inherent in a graph limits the usage of VM, and its effectiveness is bounded by the percentage of mergeable vertices. To overcome this limitation, we propose an aggressive vertex merging (AVM) method that outperforms VM by ignoring the data dependency inherent in a graph. AVM significantly reduces the execution time of ranking-based algorithms on all 4 datasets while preserving the correct ranking of the top 20 vertices.","PeriodicalId":367046,"journal":{"name":"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GraphRC\",\"authors\":\"Wei Cheng, Chun-Feng Wu, Yuan-Hao Chang, Ing-Chao Lin\",\"doi\":\"10.1145/3508352.3549408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Architectural innovation in graph accelerators attracts research attention due to foreseeable inflation in data sizes and the irregular memory access pattern of graph algorithms. Conventional graph accelerators ignore the potential of Non-Volatile Memory (NVM) crossbar as a dual-addressing memory and treat it as a traditional single-addressing memory with higher density and better energy efficiency. In this work, we present GraphRC, a graph accelerator that leverages the power of dual-addressing memory by mapping in-edge/out-edge requests to column/row-oriented memory accesses. Although the capability of dual-addressing memory greatly improves the performance of graph processing, some memory accesses still suffer from low-utilization issues, Terefore, we propose a vertex merging (VM) method that improves cache block utilization rate by merging memory requests from consecutive vertices. VM reduces the execution time of all 6 graph algorithms on all 4 datasets by 24.24% on average. We then identify the data dependency inherent in a graph limits the usage of VM, and its effectiveness is bounded by the percentage of mergeable vertices. To overcome this limitation, we propose an aggressive vertex merging (AVM) method that outperforms VM by ignoring the data dependency inherent in a graph. AVM significantly reduces the execution time of ranking-based algorithms on all 4 datasets while preserving the correct ranking of the top 20 vertices.\",\"PeriodicalId\":367046,\"journal\":{\"name\":\"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3549408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
GraphRC
Architectural innovation in graph accelerators attracts research attention due to foreseeable inflation in data sizes and the irregular memory access pattern of graph algorithms. Conventional graph accelerators ignore the potential of Non-Volatile Memory (NVM) crossbar as a dual-addressing memory and treat it as a traditional single-addressing memory with higher density and better energy efficiency. In this work, we present GraphRC, a graph accelerator that leverages the power of dual-addressing memory by mapping in-edge/out-edge requests to column/row-oriented memory accesses. Although the capability of dual-addressing memory greatly improves the performance of graph processing, some memory accesses still suffer from low-utilization issues, Terefore, we propose a vertex merging (VM) method that improves cache block utilization rate by merging memory requests from consecutive vertices. VM reduces the execution time of all 6 graph algorithms on all 4 datasets by 24.24% on average. We then identify the data dependency inherent in a graph limits the usage of VM, and its effectiveness is bounded by the percentage of mergeable vertices. To overcome this limitation, we propose an aggressive vertex merging (AVM) method that outperforms VM by ignoring the data dependency inherent in a graph. AVM significantly reduces the execution time of ranking-based algorithms on all 4 datasets while preserving the correct ranking of the top 20 vertices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信