MaxSAT,硬约束和软约束

Chu Min Li, F. Manyà
{"title":"MaxSAT,硬约束和软约束","authors":"Chu Min Li, F. Manyà","doi":"10.3233/978-1-58603-929-5-613","DOIUrl":null,"url":null,"abstract":"MaxSAT solving is becoming a competitive generic approach for solving combinatorial optimization problems, partly due to the development of new solving techniques that have been recently incorporated into modern MaxSAT solvers, and to the challenge problems posed at the MaxSAT Evaluations. In this chapter we present the most relevant results on both approximate and exact MaxSAT solving, and survey in more detail the techniques that have proven to be useful in branch and bound MaxSAT and Weighted MaxSAT solvers. Among such techniques, we pay special attention to the definition of good quality lower bounds, powerful inference rules, clever variable selection heuristics and suitable data structures. Moreover, we discuss the advantages of dealing with hard and soft constraints in the Partial MaxSAT formalims, and present a summary of the MaxSAT Evaluations that have been organized so far as affiliated events of the International Conference on Theory and Applications of Satisfiability Testing.","PeriodicalId":250589,"journal":{"name":"Handbook of Satisfiability","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"232","resultStr":"{\"title\":\"MaxSAT, Hard and Soft Constraints\",\"authors\":\"Chu Min Li, F. Manyà\",\"doi\":\"10.3233/978-1-58603-929-5-613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MaxSAT solving is becoming a competitive generic approach for solving combinatorial optimization problems, partly due to the development of new solving techniques that have been recently incorporated into modern MaxSAT solvers, and to the challenge problems posed at the MaxSAT Evaluations. In this chapter we present the most relevant results on both approximate and exact MaxSAT solving, and survey in more detail the techniques that have proven to be useful in branch and bound MaxSAT and Weighted MaxSAT solvers. Among such techniques, we pay special attention to the definition of good quality lower bounds, powerful inference rules, clever variable selection heuristics and suitable data structures. Moreover, we discuss the advantages of dealing with hard and soft constraints in the Partial MaxSAT formalims, and present a summary of the MaxSAT Evaluations that have been organized so far as affiliated events of the International Conference on Theory and Applications of Satisfiability Testing.\",\"PeriodicalId\":250589,\"journal\":{\"name\":\"Handbook of Satisfiability\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"232\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Satisfiability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/978-1-58603-929-5-613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Satisfiability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/978-1-58603-929-5-613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 232

摘要

MaxSAT求解正在成为解决组合优化问题的一种有竞争力的通用方法,部分原因是由于新求解技术的发展,这些技术最近已被纳入现代MaxSAT求解器中,以及MaxSAT评估中提出的挑战问题。在本章中,我们介绍了关于近似和精确MaxSAT求解的最相关结果,并更详细地调查了已被证明在分支和定界MaxSAT和加权MaxSAT求解器中有用的技术。在这些技术中,我们特别注意定义高质量的下界、强大的推理规则、聪明的变量选择启发式和合适的数据结构。此外,我们还讨论了在部分MaxSAT形式中处理硬约束和软约束的优点,并对目前为止作为可满足性测试理论与应用国际会议附属活动组织的MaxSAT评估进行了总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MaxSAT, Hard and Soft Constraints
MaxSAT solving is becoming a competitive generic approach for solving combinatorial optimization problems, partly due to the development of new solving techniques that have been recently incorporated into modern MaxSAT solvers, and to the challenge problems posed at the MaxSAT Evaluations. In this chapter we present the most relevant results on both approximate and exact MaxSAT solving, and survey in more detail the techniques that have proven to be useful in branch and bound MaxSAT and Weighted MaxSAT solvers. Among such techniques, we pay special attention to the definition of good quality lower bounds, powerful inference rules, clever variable selection heuristics and suitable data structures. Moreover, we discuss the advantages of dealing with hard and soft constraints in the Partial MaxSAT formalims, and present a summary of the MaxSAT Evaluations that have been organized so far as affiliated events of the International Conference on Theory and Applications of Satisfiability Testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信