贝叶斯网络中的并行抽样

V. Rego, A. Schulz
{"title":"贝叶斯网络中的并行抽样","authors":"V. Rego, A. Schulz","doi":"10.1109/TAI.1991.167077","DOIUrl":null,"url":null,"abstract":"An easily parallelized version of the Pearl sequential algorithm is presented, along with experimental results utilizing an Ncube/1, hypercube and a Sequent shared memory multiprocessor. Pearl's concurrent simulation algorithm is briefly reviewed, and three modifications to this algorithm are proposed. These modifications, known as stack, phase, and parallel simulations, show considerable speedup in experiments performed on the hypercube.<<ETX>>","PeriodicalId":371778,"journal":{"name":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel sampling in Bayesian networks\",\"authors\":\"V. Rego, A. Schulz\",\"doi\":\"10.1109/TAI.1991.167077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An easily parallelized version of the Pearl sequential algorithm is presented, along with experimental results utilizing an Ncube/1, hypercube and a Sequent shared memory multiprocessor. Pearl's concurrent simulation algorithm is briefly reviewed, and three modifications to this algorithm are proposed. These modifications, known as stack, phase, and parallel simulations, show considerable speedup in experiments performed on the hypercube.<<ETX>>\",\"PeriodicalId\":371778,\"journal\":{\"name\":\"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1991.167077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1991.167077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种易于并行化的Pearl序列算法,并给出了利用Ncube/1、hypercube和sequential共享内存多处理器的实验结果。简要回顾了Pearl并行仿真算法,并对该算法进行了三种改进。这些修改被称为堆栈、相位和并行模拟,在超立方体上进行的实验中显示出相当大的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel sampling in Bayesian networks
An easily parallelized version of the Pearl sequential algorithm is presented, along with experimental results utilizing an Ncube/1, hypercube and a Sequent shared memory multiprocessor. Pearl's concurrent simulation algorithm is briefly reviewed, and three modifications to this algorithm are proposed. These modifications, known as stack, phase, and parallel simulations, show considerable speedup in experiments performed on the hypercube.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信