{"title":"不稳定欠驱动非完整系统的完整建模与层次跟踪控制","authors":"Carsten Knoll, K. Röbenack, Bolorkhuu Dariimaa","doi":"10.1109/SSD.2016.7473730","DOIUrl":null,"url":null,"abstract":"We consider a two-wheeled single axle vehicle freely moving on the horizontal plane. This system is underactuated, nonholonomic and unstable. In order to achieve a simple control structure, the system is modeled on two levels: a nonholonomic kinematic model covering the motion of the axles midpoint and a holonomic kinetic model reflecting the (unstable) dynamics of the 3D multibody system. The kinematic model can be controlled via dynamic extension and exact feedback linearization while the multibody system is stabilized by a linear static state feedback. Both models are linked by the velocities of the wheels. The unavoidable lack of controllability for vanishing velocity is also addressed.","PeriodicalId":149580,"journal":{"name":"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holonomic modeling and hierarchic tracking control of an unstable underactuated nonholonomic system\",\"authors\":\"Carsten Knoll, K. Röbenack, Bolorkhuu Dariimaa\",\"doi\":\"10.1109/SSD.2016.7473730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a two-wheeled single axle vehicle freely moving on the horizontal plane. This system is underactuated, nonholonomic and unstable. In order to achieve a simple control structure, the system is modeled on two levels: a nonholonomic kinematic model covering the motion of the axles midpoint and a holonomic kinetic model reflecting the (unstable) dynamics of the 3D multibody system. The kinematic model can be controlled via dynamic extension and exact feedback linearization while the multibody system is stabilized by a linear static state feedback. Both models are linked by the velocities of the wheels. The unavoidable lack of controllability for vanishing velocity is also addressed.\",\"PeriodicalId\":149580,\"journal\":{\"name\":\"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSD.2016.7473730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD.2016.7473730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Holonomic modeling and hierarchic tracking control of an unstable underactuated nonholonomic system
We consider a two-wheeled single axle vehicle freely moving on the horizontal plane. This system is underactuated, nonholonomic and unstable. In order to achieve a simple control structure, the system is modeled on two levels: a nonholonomic kinematic model covering the motion of the axles midpoint and a holonomic kinetic model reflecting the (unstable) dynamics of the 3D multibody system. The kinematic model can be controlled via dynamic extension and exact feedback linearization while the multibody system is stabilized by a linear static state feedback. Both models are linked by the velocities of the wheels. The unavoidable lack of controllability for vanishing velocity is also addressed.