基于k部图查询中心随机游动的推荐算法

H. Cheng, P. Tan, J. Sticklen, W. Punch
{"title":"基于k部图查询中心随机游动的推荐算法","authors":"H. Cheng, P. Tan, J. Sticklen, W. Punch","doi":"10.1109/ICDM.2007.8","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm for recommending items using a diverse set of features. The items are recommended by performing a random walk on the k-partite graph constructed from the heterogenous features. To support personalized recommendation, the random walk must be initiated separately for each user, which is computationally demanding given the massive size of the graph. To overcome this problem, we apply multi-way clustering to group together the highly correlated nodes. A recommendation is then made by traversing the subgraph induced by clusters associated with a user's interest. Our experimental results on real data sets demonstrate the efficacy of the proposed algorithm.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Recommendation via Query Centered Random Walk on K-Partite Graph\",\"authors\":\"H. Cheng, P. Tan, J. Sticklen, W. Punch\",\"doi\":\"10.1109/ICDM.2007.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an algorithm for recommending items using a diverse set of features. The items are recommended by performing a random walk on the k-partite graph constructed from the heterogenous features. To support personalized recommendation, the random walk must be initiated separately for each user, which is computationally demanding given the massive size of the graph. To overcome this problem, we apply multi-way clustering to group together the highly correlated nodes. A recommendation is then made by traversing the subgraph induced by clusters associated with a user's interest. Our experimental results on real data sets demonstrate the efficacy of the proposed algorithm.\",\"PeriodicalId\":233758,\"journal\":{\"name\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2007.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

本文提出了一种利用多种特征集进行商品推荐的算法。通过对由异构特征构造的k部图进行随机漫步来推荐项目。为了支持个性化推荐,随机漫步必须为每个用户单独启动,考虑到图的巨大尺寸,这对计算要求很高。为了克服这一问题,我们采用多路聚类方法将高度相关的节点聚在一起。然后,通过遍历与用户兴趣相关的聚类引起的子图来提出建议。在实际数据集上的实验结果证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recommendation via Query Centered Random Walk on K-Partite Graph
This paper presents an algorithm for recommending items using a diverse set of features. The items are recommended by performing a random walk on the k-partite graph constructed from the heterogenous features. To support personalized recommendation, the random walk must be initiated separately for each user, which is computationally demanding given the massive size of the graph. To overcome this problem, we apply multi-way clustering to group together the highly correlated nodes. A recommendation is then made by traversing the subgraph induced by clusters associated with a user's interest. Our experimental results on real data sets demonstrate the efficacy of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信