基于WGAN-GP框架的多操作图像反取证

Jianyuan Wu, Zheng Wang, Hui Zeng, Xiangui Kang
{"title":"基于WGAN-GP框架的多操作图像反取证","authors":"Jianyuan Wu, Zheng Wang, Hui Zeng, Xiangui Kang","doi":"10.1109/APSIPAASC47483.2019.9023173","DOIUrl":null,"url":null,"abstract":"A challenging task in the field of multimedia security involves concealing or eliminating the traces left by a chain of multiple manipulating operations, i.e., multiple-operation anti-forensics in short. However, the existing anti-forensic works concentrate on one specific manipulation, referred as single-operation anti-forensics. In this work, we propose using the improved Wasserstein generative adversarial networks with gradient penalty (WGAN-GP) to model image anti-forensics as an image-to-image translation problem and obtain the optimized anti-forensic models of multiple-operation. The experimental results demonstrate that our multiple-operation anti-forensic scheme successfully deceives the state-of-the-art forensic algorithms without significantly degrading the quality of the image, and even enhancing quality in most cases. To our best knowledge, this is the first attempt to explore the problem of multiple-operation anti-forensics.","PeriodicalId":145222,"journal":{"name":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multiple-Operation Image Anti-Forensics with WGAN-GP Framework\",\"authors\":\"Jianyuan Wu, Zheng Wang, Hui Zeng, Xiangui Kang\",\"doi\":\"10.1109/APSIPAASC47483.2019.9023173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A challenging task in the field of multimedia security involves concealing or eliminating the traces left by a chain of multiple manipulating operations, i.e., multiple-operation anti-forensics in short. However, the existing anti-forensic works concentrate on one specific manipulation, referred as single-operation anti-forensics. In this work, we propose using the improved Wasserstein generative adversarial networks with gradient penalty (WGAN-GP) to model image anti-forensics as an image-to-image translation problem and obtain the optimized anti-forensic models of multiple-operation. The experimental results demonstrate that our multiple-operation anti-forensic scheme successfully deceives the state-of-the-art forensic algorithms without significantly degrading the quality of the image, and even enhancing quality in most cases. To our best knowledge, this is the first attempt to explore the problem of multiple-operation anti-forensics.\",\"PeriodicalId\":145222,\"journal\":{\"name\":\"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPAASC47483.2019.9023173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPAASC47483.2019.9023173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

隐藏或消除一系列多重操纵操作所留下的痕迹,即多操作反取证,是多媒体安全领域的一项具有挑战性的任务。然而,现有的反取证工作集中在一种特定的操作上,称为单操作反取证。在这项工作中,我们提出使用改进的带有梯度惩罚的Wasserstein生成对抗网络(WGAN-GP)将图像反取证建模为图像到图像的翻译问题,并获得优化的多操作反取证模型。实验结果表明,我们的多操作反取证方案成功地欺骗了最先进的取证算法,而不会显著降低图像质量,甚至在大多数情况下可以提高图像质量。据我们所知,这是第一次尝试探索多重操作反取证问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple-Operation Image Anti-Forensics with WGAN-GP Framework
A challenging task in the field of multimedia security involves concealing or eliminating the traces left by a chain of multiple manipulating operations, i.e., multiple-operation anti-forensics in short. However, the existing anti-forensic works concentrate on one specific manipulation, referred as single-operation anti-forensics. In this work, we propose using the improved Wasserstein generative adversarial networks with gradient penalty (WGAN-GP) to model image anti-forensics as an image-to-image translation problem and obtain the optimized anti-forensic models of multiple-operation. The experimental results demonstrate that our multiple-operation anti-forensic scheme successfully deceives the state-of-the-art forensic algorithms without significantly degrading the quality of the image, and even enhancing quality in most cases. To our best knowledge, this is the first attempt to explore the problem of multiple-operation anti-forensics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信