利用功能梯度材料优化150 kV GIS隔层的电场

S. Hidayat, F. Damanik, U. Khayam
{"title":"利用功能梯度材料优化150 kV GIS隔层的电场","authors":"S. Hidayat, F. Damanik, U. Khayam","doi":"10.1109/icimece.2016.7910451","DOIUrl":null,"url":null,"abstract":"This paper deals with the electric field optimization on the spacer of 150 kV Gas Insulated Substation (GIS) using Functionally Gradient Material (FGM). The basic spacer model is made from epoxy resin with permittivity equals 3.5. The dimension of basic spacer and spacer with FGM modification is same. FGM is done by composing 90% of spacer with epoxy resin and 10% of spacer with higher permittivity. Titanium Oxide (TiO2) with relative permittivity 8.4 is chosen as grading material. Therefore, the spacer with FGM consists of epoxy resin with relative permittivity 3.5 and Titanium Oxide (TiO2) with relative permittivity 8.4. The Titanium Oxide material is placed on the top and the bottom of the epoxy resin material. The maximum electric field intensity on 150 kV GIS spacer without modification is 138 kV/cm [17]. The maximum electric field intensity is still below the electric field breakdown of epoxy resin (197 kV/cm) [18]. FGM modification with Titanium Oxide (TiO2) layer reduces the maximum electric field on spacer to 56 kV/cm.","PeriodicalId":143505,"journal":{"name":"2016 2nd International Conference of Industrial, Mechanical, Electrical, and Chemical Engineering (ICIMECE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Electric field optimization on 150 kV GIS spacer using functionally gradient material\",\"authors\":\"S. Hidayat, F. Damanik, U. Khayam\",\"doi\":\"10.1109/icimece.2016.7910451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the electric field optimization on the spacer of 150 kV Gas Insulated Substation (GIS) using Functionally Gradient Material (FGM). The basic spacer model is made from epoxy resin with permittivity equals 3.5. The dimension of basic spacer and spacer with FGM modification is same. FGM is done by composing 90% of spacer with epoxy resin and 10% of spacer with higher permittivity. Titanium Oxide (TiO2) with relative permittivity 8.4 is chosen as grading material. Therefore, the spacer with FGM consists of epoxy resin with relative permittivity 3.5 and Titanium Oxide (TiO2) with relative permittivity 8.4. The Titanium Oxide material is placed on the top and the bottom of the epoxy resin material. The maximum electric field intensity on 150 kV GIS spacer without modification is 138 kV/cm [17]. The maximum electric field intensity is still below the electric field breakdown of epoxy resin (197 kV/cm) [18]. FGM modification with Titanium Oxide (TiO2) layer reduces the maximum electric field on spacer to 56 kV/cm.\",\"PeriodicalId\":143505,\"journal\":{\"name\":\"2016 2nd International Conference of Industrial, Mechanical, Electrical, and Chemical Engineering (ICIMECE)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 2nd International Conference of Industrial, Mechanical, Electrical, and Chemical Engineering (ICIMECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icimece.2016.7910451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference of Industrial, Mechanical, Electrical, and Chemical Engineering (ICIMECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icimece.2016.7910451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了利用功能梯度材料对150kv气体绝缘变电站隔层进行电场优化的方法。基本隔离模型由介电常数为3.5的环氧树脂制成。基本垫片与经FGM修饰的垫片尺寸相同。FGM是由90%的环氧树脂隔离剂和10%的高介电常数隔离剂组成的。选择相对介电常数为8.4的氧化钛(TiO2)作为级配材料。因此,FGM隔离剂由相对介电常数为3.5的环氧树脂和相对介电常数为8.4的氧化钛(TiO2)组成。环氧树脂材料的顶部和底部分别放置氧化钛材料。未经改造的150 kV GIS隔震片上最大电场强度为138 kV/cm[17]。最大电场强度仍低于环氧树脂的电场击穿(197 kV/cm)[18]。用氧化钛(TiO2)层对FGM进行改性,使间隔片上的最大电场降至56 kV/cm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electric field optimization on 150 kV GIS spacer using functionally gradient material
This paper deals with the electric field optimization on the spacer of 150 kV Gas Insulated Substation (GIS) using Functionally Gradient Material (FGM). The basic spacer model is made from epoxy resin with permittivity equals 3.5. The dimension of basic spacer and spacer with FGM modification is same. FGM is done by composing 90% of spacer with epoxy resin and 10% of spacer with higher permittivity. Titanium Oxide (TiO2) with relative permittivity 8.4 is chosen as grading material. Therefore, the spacer with FGM consists of epoxy resin with relative permittivity 3.5 and Titanium Oxide (TiO2) with relative permittivity 8.4. The Titanium Oxide material is placed on the top and the bottom of the epoxy resin material. The maximum electric field intensity on 150 kV GIS spacer without modification is 138 kV/cm [17]. The maximum electric field intensity is still below the electric field breakdown of epoxy resin (197 kV/cm) [18]. FGM modification with Titanium Oxide (TiO2) layer reduces the maximum electric field on spacer to 56 kV/cm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信