Benjamin Bruder, Nicolas Gaussel, J. Richard, T. Roncalli
{"title":"投资组合配置的正则化","authors":"Benjamin Bruder, Nicolas Gaussel, J. Richard, T. Roncalli","doi":"10.2139/ssrn.2767358","DOIUrl":null,"url":null,"abstract":"The mean-variance optimization (MVO) theory of Markowitz (1952) for portfolio selection is one of the most important methods used in quantitative finance. This portfolio allocation needs two input parameters, the vector of expected returns and the covariance matrix of asset returns. This process leads to estimation errors, which may have a large impact on portfolio weights. In this paper we review different methods which aim to stabilize the mean-variance allocation. In particular, we consider recent results from machine learning theory to obtain more robust allocation.","PeriodicalId":106740,"journal":{"name":"ERN: Other Econometrics: Econometric Model Construction","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Regularization of Portfolio Allocation\",\"authors\":\"Benjamin Bruder, Nicolas Gaussel, J. Richard, T. Roncalli\",\"doi\":\"10.2139/ssrn.2767358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mean-variance optimization (MVO) theory of Markowitz (1952) for portfolio selection is one of the most important methods used in quantitative finance. This portfolio allocation needs two input parameters, the vector of expected returns and the covariance matrix of asset returns. This process leads to estimation errors, which may have a large impact on portfolio weights. In this paper we review different methods which aim to stabilize the mean-variance allocation. In particular, we consider recent results from machine learning theory to obtain more robust allocation.\",\"PeriodicalId\":106740,\"journal\":{\"name\":\"ERN: Other Econometrics: Econometric Model Construction\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Econometric Model Construction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2767358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric Model Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2767358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The mean-variance optimization (MVO) theory of Markowitz (1952) for portfolio selection is one of the most important methods used in quantitative finance. This portfolio allocation needs two input parameters, the vector of expected returns and the covariance matrix of asset returns. This process leads to estimation errors, which may have a large impact on portfolio weights. In this paper we review different methods which aim to stabilize the mean-variance allocation. In particular, we consider recent results from machine learning theory to obtain more robust allocation.