NP-SOM:网络可编程自组织地图

Yann Bernard, Emeline Buoy, Adrien Fois, B. Girau
{"title":"NP-SOM:网络可编程自组织地图","authors":"Yann Bernard, Emeline Buoy, Adrien Fois, B. Girau","doi":"10.1109/ICTAI.2018.00141","DOIUrl":null,"url":null,"abstract":"Self-organizing maps (SOM) are a well-known and biologically plausible model of input-driven self-organization that has shown to be effective in a wide range of applications. We want to use SOMs to control the processing cores of a massively parallel digital reconfigurable hardware, taking into account the communication constraints of its underlying network-on-chip (NoC) thanks to bio-inspired principles of structural plasticity. Although the SOM accounts for synaptic plasticity, it doesn't address structural plasticity. Therefore we have developed a model, namely the NP-SOM (network programmable self-organizing map), able to define SOMs with different underlying topologies as the result of a specific configuration of the associated NoC. To gain insights on a future introduction of advanced structural plasticity rules that will induce dynamic topological modifications, we investigate and quantify the effects of different hardware-compatible topologies on the SOM performance. To perform our tests we consider a lossy image compression as an illustrative application.","PeriodicalId":254686,"journal":{"name":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"NP-SOM: Network Programmable Self-Organizing Maps\",\"authors\":\"Yann Bernard, Emeline Buoy, Adrien Fois, B. Girau\",\"doi\":\"10.1109/ICTAI.2018.00141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-organizing maps (SOM) are a well-known and biologically plausible model of input-driven self-organization that has shown to be effective in a wide range of applications. We want to use SOMs to control the processing cores of a massively parallel digital reconfigurable hardware, taking into account the communication constraints of its underlying network-on-chip (NoC) thanks to bio-inspired principles of structural plasticity. Although the SOM accounts for synaptic plasticity, it doesn't address structural plasticity. Therefore we have developed a model, namely the NP-SOM (network programmable self-organizing map), able to define SOMs with different underlying topologies as the result of a specific configuration of the associated NoC. To gain insights on a future introduction of advanced structural plasticity rules that will induce dynamic topological modifications, we investigate and quantify the effects of different hardware-compatible topologies on the SOM performance. To perform our tests we consider a lossy image compression as an illustrative application.\",\"PeriodicalId\":254686,\"journal\":{\"name\":\"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2018.00141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2018.00141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自组织图(SOM)是一种众所周知的、生物学上合理的投入驱动自组织模型,已被证明在广泛的应用中是有效的。我们希望使用SOMs来控制大规模并行数字可重构硬件的处理核心,同时考虑到其底层片上网络(NoC)的通信限制,这要归功于受生物启发的结构可塑性原则。虽然SOM解释了突触的可塑性,但它并没有解决结构的可塑性。因此,我们开发了一个模型,即NP-SOM(网络可编程自组织映射),能够定义具有不同底层拓扑的som,作为相关NoC的特定配置的结果。为了深入了解未来引入的高级结构塑性规则,将诱导动态拓扑修改,我们研究并量化了不同硬件兼容拓扑对SOM性能的影响。为了执行我们的测试,我们考虑有损图像压缩作为一个说明性应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NP-SOM: Network Programmable Self-Organizing Maps
Self-organizing maps (SOM) are a well-known and biologically plausible model of input-driven self-organization that has shown to be effective in a wide range of applications. We want to use SOMs to control the processing cores of a massively parallel digital reconfigurable hardware, taking into account the communication constraints of its underlying network-on-chip (NoC) thanks to bio-inspired principles of structural plasticity. Although the SOM accounts for synaptic plasticity, it doesn't address structural plasticity. Therefore we have developed a model, namely the NP-SOM (network programmable self-organizing map), able to define SOMs with different underlying topologies as the result of a specific configuration of the associated NoC. To gain insights on a future introduction of advanced structural plasticity rules that will induce dynamic topological modifications, we investigate and quantify the effects of different hardware-compatible topologies on the SOM performance. To perform our tests we consider a lossy image compression as an illustrative application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信