基于启发式搜索的交错Web会话分离

Marko Pozenel, V. Mahnic, M. Kukar
{"title":"基于启发式搜索的交错Web会话分离","authors":"Marko Pozenel, V. Mahnic, M. Kukar","doi":"10.1109/ICDM.2010.43","DOIUrl":null,"url":null,"abstract":"We describe a heuristic search-based method for interleaved HTTP (Web) session reconstruction building upon first order Markov models. An interleaved session is generated by a user who is concurrently browsing the same web site in two or more web sessions (browser tabs or windows). In order to assure data quality for subsequent phases in analyzing user's browsing behavior, such sessions need to be separated in advance. We propose a separating process based on best-first search and trained first order Markov chains. We develop a testing method based on various measures of reconstructed sessions similarity to original ones. We evaluate the developed method on two real world click stream data sources: a web shop and a university student records information system. Preliminary results show that the proposed method performs well.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Separation of Interleaved Web Sessions with Heuristic Search\",\"authors\":\"Marko Pozenel, V. Mahnic, M. Kukar\",\"doi\":\"10.1109/ICDM.2010.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a heuristic search-based method for interleaved HTTP (Web) session reconstruction building upon first order Markov models. An interleaved session is generated by a user who is concurrently browsing the same web site in two or more web sessions (browser tabs or windows). In order to assure data quality for subsequent phases in analyzing user's browsing behavior, such sessions need to be separated in advance. We propose a separating process based on best-first search and trained first order Markov chains. We develop a testing method based on various measures of reconstructed sessions similarity to original ones. We evaluate the developed method on two real world click stream data sources: a web shop and a university student records information system. Preliminary results show that the proposed method performs well.\",\"PeriodicalId\":294061,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2010.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文描述了一种基于一阶马尔可夫模型的基于启发式搜索的交错HTTP (Web)会话重建方法。交错会话是由用户在两个或多个web会话(浏览器选项卡或窗口)中同时浏览同一个网站产生的。为了保证分析用户浏览行为的后续阶段的数据质量,这些会话需要提前分离。我们提出了一种基于最佳优先搜索和训练一阶马尔可夫链的分离过程。我们开发了一种基于重建会话与原始会话相似度的各种度量的测试方法。我们在两个真实世界的点击流数据源上对所开发的方法进行了评估:一个网上商店和一个大学生档案信息系统。初步结果表明,该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separation of Interleaved Web Sessions with Heuristic Search
We describe a heuristic search-based method for interleaved HTTP (Web) session reconstruction building upon first order Markov models. An interleaved session is generated by a user who is concurrently browsing the same web site in two or more web sessions (browser tabs or windows). In order to assure data quality for subsequent phases in analyzing user's browsing behavior, such sessions need to be separated in advance. We propose a separating process based on best-first search and trained first order Markov chains. We develop a testing method based on various measures of reconstructed sessions similarity to original ones. We evaluate the developed method on two real world click stream data sources: a web shop and a university student records information system. Preliminary results show that the proposed method performs well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信