四边形网格到光滑表面的GPU转换

A. Myles, Young In Yeo, J. Peters
{"title":"四边形网格到光滑表面的GPU转换","authors":"A. Myles, Young In Yeo, J. Peters","doi":"10.1145/1364901.1364946","DOIUrl":null,"url":null,"abstract":"We convert any quad manifold mesh into an at least C1 surface consisting of bi-cubic tensor-product splines with localized perturbations of degree bi-5 near non-4-valent vertices. There is one polynomial piece per quad facet, regardless of the valence of the vertices. Particular care is taken to derive simple formulas so that the surfaces are computed efficiently in parallel and match up precisely when computed independently on the GPU.","PeriodicalId":216067,"journal":{"name":"Symposium on Solid and Physical Modeling","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"GPU conversion of quad meshes to smooth surfaces\",\"authors\":\"A. Myles, Young In Yeo, J. Peters\",\"doi\":\"10.1145/1364901.1364946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We convert any quad manifold mesh into an at least C1 surface consisting of bi-cubic tensor-product splines with localized perturbations of degree bi-5 near non-4-valent vertices. There is one polynomial piece per quad facet, regardless of the valence of the vertices. Particular care is taken to derive simple formulas so that the surfaces are computed efficiently in parallel and match up precisely when computed independently on the GPU.\",\"PeriodicalId\":216067,\"journal\":{\"name\":\"Symposium on Solid and Physical Modeling\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Solid and Physical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1364901.1364946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Solid and Physical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1364901.1364946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

我们将任意四流形网格转化为至少C1曲面,该曲面由双三次张量积样条组成,在非四价顶点附近具有双-5次局部扰动。每个四边形面都有一个多项式片,不管顶点的价。特别注意推导简单的公式,以便在并行计算中有效地计算表面,并在GPU上独立计算时精确匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU conversion of quad meshes to smooth surfaces
We convert any quad manifold mesh into an at least C1 surface consisting of bi-cubic tensor-product splines with localized perturbations of degree bi-5 near non-4-valent vertices. There is one polynomial piece per quad facet, regardless of the valence of the vertices. Particular care is taken to derive simple formulas so that the surfaces are computed efficiently in parallel and match up precisely when computed independently on the GPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信