精确恢复阈值在二进制截尾块模型

B. Hajek, Yihong Wu, Jiaming Xu
{"title":"精确恢复阈值在二进制截尾块模型","authors":"B. Hajek, Yihong Wu, Jiaming Xu","doi":"10.1109/ITWF.2015.7360742","DOIUrl":null,"url":null,"abstract":"Given a background graph with n vertices, the binary censored block model assumes that vertices are partitioned into two clusters, and every edge is labeled independently at random with labels drawn from Bern(1 - ε) if two endpoints are in the same cluster, or from Bern(ε) otherwise, where ε E [0, 1/2] is a fixed constant. For Erdós-Rényi graphs with edge probability p = a log n/n and fixed a, we show that the semidefinite programming relaxation of the maximum likelihood estimator achieves the optimal threshold a(√1 - ε - √ε)2 > 1 for exactly recovering the partition from the labeled graph with probability tending to one as n oo. For random regular graphs with degree scaling as a log n, we show that the semidefinite programming relaxation also achieves the optimal recovery threshold aD(Bern(1/2)IIBern(ε)) > 1, where D denotes the Kullback-Leibler divergence.","PeriodicalId":281890,"journal":{"name":"2015 IEEE Information Theory Workshop - Fall (ITW)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Exact recovery threshold in the binary censored block model\",\"authors\":\"B. Hajek, Yihong Wu, Jiaming Xu\",\"doi\":\"10.1109/ITWF.2015.7360742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a background graph with n vertices, the binary censored block model assumes that vertices are partitioned into two clusters, and every edge is labeled independently at random with labels drawn from Bern(1 - ε) if two endpoints are in the same cluster, or from Bern(ε) otherwise, where ε E [0, 1/2] is a fixed constant. For Erdós-Rényi graphs with edge probability p = a log n/n and fixed a, we show that the semidefinite programming relaxation of the maximum likelihood estimator achieves the optimal threshold a(√1 - ε - √ε)2 > 1 for exactly recovering the partition from the labeled graph with probability tending to one as n oo. For random regular graphs with degree scaling as a log n, we show that the semidefinite programming relaxation also achieves the optimal recovery threshold aD(Bern(1/2)IIBern(ε)) > 1, where D denotes the Kullback-Leibler divergence.\",\"PeriodicalId\":281890,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop - Fall (ITW)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop - Fall (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITWF.2015.7360742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop - Fall (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITWF.2015.7360742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

给定一个有n个顶点的背景图,二元截尾块模型假设顶点被分割成两个聚类,如果两个端点在同一聚类中,则每条边随机独立标记,如果两个端点在同一聚类中,则标记来自Bern(1 - ε),否则标记来自Bern(ε),其中ε E[0,1 /2]是固定常数。对于边概率p = a log n/n且a固定的Erdós-Rényi图,我们证明了极大似然估计器的半定规划松弛达到了从概率趋于1的标记图精确恢复分区的最优阈值a(√1 - ε -√ε)2 > 1。对于度标度为log n的随机正则图,我们证明了半定规划松弛也达到了最优恢复阈值aD(Bern(1/2)IIBern(ε)) > 1,其中D表示Kullback-Leibler散度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact recovery threshold in the binary censored block model
Given a background graph with n vertices, the binary censored block model assumes that vertices are partitioned into two clusters, and every edge is labeled independently at random with labels drawn from Bern(1 - ε) if two endpoints are in the same cluster, or from Bern(ε) otherwise, where ε E [0, 1/2] is a fixed constant. For Erdós-Rényi graphs with edge probability p = a log n/n and fixed a, we show that the semidefinite programming relaxation of the maximum likelihood estimator achieves the optimal threshold a(√1 - ε - √ε)2 > 1 for exactly recovering the partition from the labeled graph with probability tending to one as n oo. For random regular graphs with degree scaling as a log n, we show that the semidefinite programming relaxation also achieves the optimal recovery threshold aD(Bern(1/2)IIBern(ε)) > 1, where D denotes the Kullback-Leibler divergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信