最大似然pqEDMD鉴定

Camilo Garcia-Tenorio, A. Wouwer
{"title":"最大似然pqEDMD鉴定","authors":"Camilo Garcia-Tenorio, A. Wouwer","doi":"10.1109/ICSTCC55426.2022.9931770","DOIUrl":null,"url":null,"abstract":"The ordinary least squares (OLS) regression for linear system identification might give biased results when noise affects some explicative variables. As OLS is at the core of the extended dynamic mode decomposition algorithm, it is interesting to pay attention to alternative methods, such as maximum likelihood estimation (MLE), to deal with the identification problem. This study explores this direction, discusses the question of defining the probability distribution of the observable functions, and illustrates the performance of the algorithm with two case studies. The first one shows a successful application of MLE to a simple reaction network, while the second, more complex example based on the Duffing equation highlights the method limitation in relation with the empirical construction of the probability distribution of the observables.","PeriodicalId":220845,"journal":{"name":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Maximum Likelihood pqEDMD Identification\",\"authors\":\"Camilo Garcia-Tenorio, A. Wouwer\",\"doi\":\"10.1109/ICSTCC55426.2022.9931770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ordinary least squares (OLS) regression for linear system identification might give biased results when noise affects some explicative variables. As OLS is at the core of the extended dynamic mode decomposition algorithm, it is interesting to pay attention to alternative methods, such as maximum likelihood estimation (MLE), to deal with the identification problem. This study explores this direction, discusses the question of defining the probability distribution of the observable functions, and illustrates the performance of the algorithm with two case studies. The first one shows a successful application of MLE to a simple reaction network, while the second, more complex example based on the Duffing equation highlights the method limitation in relation with the empirical construction of the probability distribution of the observables.\",\"PeriodicalId\":220845,\"journal\":{\"name\":\"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTCC55426.2022.9931770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC55426.2022.9931770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

当噪声影响某些解释变量时,用于线性系统辨识的普通最小二乘(OLS)回归可能会给出有偏差的结果。由于OLS是扩展动态模态分解算法的核心,因此关注最大似然估计(MLE)等替代方法来处理识别问题是很有趣的。本研究探讨了这一方向,讨论了定义可观测函数的概率分布的问题,并通过两个案例说明了算法的性能。第一个例子显示了MLE在简单反应网络中的成功应用,而第二个基于Duffing方程的更复杂的例子突出了与观测值概率分布的经验构造相关的方法局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum Likelihood pqEDMD Identification
The ordinary least squares (OLS) regression for linear system identification might give biased results when noise affects some explicative variables. As OLS is at the core of the extended dynamic mode decomposition algorithm, it is interesting to pay attention to alternative methods, such as maximum likelihood estimation (MLE), to deal with the identification problem. This study explores this direction, discusses the question of defining the probability distribution of the observable functions, and illustrates the performance of the algorithm with two case studies. The first one shows a successful application of MLE to a simple reaction network, while the second, more complex example based on the Duffing equation highlights the method limitation in relation with the empirical construction of the probability distribution of the observables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信