SpottingNet:用卷积神经网络学习单词图像的相似度,用于手写体历史文献中的单词识别

Zhuoyao Zhong, Weishen Pan, Lianwen Jin, H. Mouchère, C. Viard-Gaudin
{"title":"SpottingNet:用卷积神经网络学习单词图像的相似度,用于手写体历史文献中的单词识别","authors":"Zhuoyao Zhong, Weishen Pan, Lianwen Jin, H. Mouchère, C. Viard-Gaudin","doi":"10.1109/ICFHR.2016.0063","DOIUrl":null,"url":null,"abstract":"Word spotting is a content-based retrieval process that obtains a ranked list of word image candidates similar to the query word in digital document images. In this paper, we present a convolutional neural network (CNN) based end-to-end approach for Query-by-Example (QBE) word spotting in handwritten historical documents. The presented models enable conjointly learning the representative word image descriptors and evaluating the similarity measure between word descriptors directly from the word image, which are the two crucial factors in this task. We propose a similarity score fusion method integrated with hybrid deep-learning classifica-tion and regression models to enhance word spotting perfor-mance. In addition, we present a sample generation method using location jitter to balance similar and dissimilar image pairs and enlarge the dataset. Experiments are conducted on the George Washington (GW) dataset without involving any recognition methods or prior word category information. Our experiments show that the proposed model yields a new state-of-the-art mean average precision (mAP) of 80.03%, significantly outperforming previous results.","PeriodicalId":194844,"journal":{"name":"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"SpottingNet: Learning the Similarity of Word Images with Convolutional Neural Network for Word Spotting in Handwritten Historical Documents\",\"authors\":\"Zhuoyao Zhong, Weishen Pan, Lianwen Jin, H. Mouchère, C. Viard-Gaudin\",\"doi\":\"10.1109/ICFHR.2016.0063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Word spotting is a content-based retrieval process that obtains a ranked list of word image candidates similar to the query word in digital document images. In this paper, we present a convolutional neural network (CNN) based end-to-end approach for Query-by-Example (QBE) word spotting in handwritten historical documents. The presented models enable conjointly learning the representative word image descriptors and evaluating the similarity measure between word descriptors directly from the word image, which are the two crucial factors in this task. We propose a similarity score fusion method integrated with hybrid deep-learning classifica-tion and regression models to enhance word spotting perfor-mance. In addition, we present a sample generation method using location jitter to balance similar and dissimilar image pairs and enlarge the dataset. Experiments are conducted on the George Washington (GW) dataset without involving any recognition methods or prior word category information. Our experiments show that the proposed model yields a new state-of-the-art mean average precision (mAP) of 80.03%, significantly outperforming previous results.\",\"PeriodicalId\":194844,\"journal\":{\"name\":\"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2016.0063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2016.0063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

单词定位是一种基于内容的检索过程,它获得与数字文档图像中的查询词相似的候选单词的排序列表。在本文中,我们提出了一种基于卷积神经网络(CNN)的端到端方法,用于手写历史文档中的按例查询(QBE)单词识别。所提出的模型能够联合学习具有代表性的词图像描述符,并直接从词图像中评估词描述符之间的相似性度量,这是该任务的两个关键因素。我们提出了一种结合混合深度学习分类和回归模型的相似分数融合方法来提高单词识别性能。此外,我们还提出了一种利用位置抖动来平衡相似和不相似图像对并扩大数据集的样本生成方法。在不涉及任何识别方法和先验词类信息的情况下,在乔治华盛顿(GW)数据集上进行实验。我们的实验表明,所提出的模型产生了新的最先进的平均精度(mAP)为80.03%,显著优于之前的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SpottingNet: Learning the Similarity of Word Images with Convolutional Neural Network for Word Spotting in Handwritten Historical Documents
Word spotting is a content-based retrieval process that obtains a ranked list of word image candidates similar to the query word in digital document images. In this paper, we present a convolutional neural network (CNN) based end-to-end approach for Query-by-Example (QBE) word spotting in handwritten historical documents. The presented models enable conjointly learning the representative word image descriptors and evaluating the similarity measure between word descriptors directly from the word image, which are the two crucial factors in this task. We propose a similarity score fusion method integrated with hybrid deep-learning classifica-tion and regression models to enhance word spotting perfor-mance. In addition, we present a sample generation method using location jitter to balance similar and dissimilar image pairs and enlarge the dataset. Experiments are conducted on the George Washington (GW) dataset without involving any recognition methods or prior word category information. Our experiments show that the proposed model yields a new state-of-the-art mean average precision (mAP) of 80.03%, significantly outperforming previous results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信