基于最小权值更新的RBF序列学习方法

V. Asirvadam, S. McLoone
{"title":"基于最小权值更新的RBF序列学习方法","authors":"V. Asirvadam, S. McLoone","doi":"10.1109/NSSPW.2006.4378851","DOIUrl":null,"url":null,"abstract":"This paper investigates sequential learning method with new form of weight update applied on a decomposed form of training algorithms using Radial Basis Function (RBF) network. Adding each basis function to the hidden layer during the course of training facilitate the weight update to be decomposed on neuron by neuron basis. A new form weight update is introduced where the weight update is based on minimal displacement of the current input elements to the elements of the nearest centre of the Gaussian neuron.","PeriodicalId":388611,"journal":{"name":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sequential Learning Methods on RBF with Novel Approach of Minimal Weight Update\",\"authors\":\"V. Asirvadam, S. McLoone\",\"doi\":\"10.1109/NSSPW.2006.4378851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates sequential learning method with new form of weight update applied on a decomposed form of training algorithms using Radial Basis Function (RBF) network. Adding each basis function to the hidden layer during the course of training facilitate the weight update to be decomposed on neuron by neuron basis. A new form weight update is introduced where the weight update is based on minimal displacement of the current input elements to the elements of the nearest centre of the Gaussian neuron.\",\"PeriodicalId\":388611,\"journal\":{\"name\":\"2006 IEEE Nonlinear Statistical Signal Processing Workshop\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Nonlinear Statistical Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSPW.2006.4378851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSPW.2006.4378851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一种基于径向基函数(RBF)网络的训练算法分解后的序列学习方法。在训练过程中,将每个基函数添加到隐藏层中,使得权重更新可以逐神经元基分解。引入了一种新的权重更新形式,其中权重更新基于当前输入元素到高斯神经元最近中心元素的最小位移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequential Learning Methods on RBF with Novel Approach of Minimal Weight Update
This paper investigates sequential learning method with new form of weight update applied on a decomposed form of training algorithms using Radial Basis Function (RBF) network. Adding each basis function to the hidden layer during the course of training facilitate the weight update to be decomposed on neuron by neuron basis. A new form weight update is introduced where the weight update is based on minimal displacement of the current input elements to the elements of the nearest centre of the Gaussian neuron.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信