用于室内物联网系统的多晶硅光伏采集,在红-远红色人造光下

M. Bruzzi, I. Cappelli, A. Fort, A. Pozzebon, M. Tani, V. Vignoli
{"title":"用于室内物联网系统的多晶硅光伏采集,在红-远红色人造光下","authors":"M. Bruzzi, I. Cappelli, A. Fort, A. Pozzebon, M. Tani, V. Vignoli","doi":"10.1109/SAS51076.2021.9530063","DOIUrl":null,"url":null,"abstract":"This paper aims at demonstrating the feasibility of a LoRaWAN-based sensor node for temperature monitoring, autonomously powered by a polycrystalline silicon photovoltaic module with possible applications within the Internet of Things (loT) domain in the horticulture field. The commercial solar cell was characterized under two light sources: a conventional white 4000 K Light Emitting Diode (LED) and a red and far red (R:FR) lamp peaked at 655 nm and 730 nm. The sensor node is equipped with a RFM95x LoRa transceiver which proved to be a valid technology in those application scenarios where robustness and low power consumption are required. The energy harvesting features are performed by a nano-power boost charger buck converter which deals with the power extraction from the photovoltaic module, the LiPo battery charging/discharging management and the supply of the sensor node. Field tests demonstrate that under R:fr light source, the energy self-sufficiency of the system is achieved: a positive balance between the battery charge and discharge is measured, sufficient both for the node working operation and for the battery charging.","PeriodicalId":224327,"journal":{"name":"2021 IEEE Sensors Applications Symposium (SAS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Polycrystalline silicon photovoltaic harvesting for indoor IoT systems under red- far red artificial light\",\"authors\":\"M. Bruzzi, I. Cappelli, A. Fort, A. Pozzebon, M. Tani, V. Vignoli\",\"doi\":\"10.1109/SAS51076.2021.9530063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims at demonstrating the feasibility of a LoRaWAN-based sensor node for temperature monitoring, autonomously powered by a polycrystalline silicon photovoltaic module with possible applications within the Internet of Things (loT) domain in the horticulture field. The commercial solar cell was characterized under two light sources: a conventional white 4000 K Light Emitting Diode (LED) and a red and far red (R:FR) lamp peaked at 655 nm and 730 nm. The sensor node is equipped with a RFM95x LoRa transceiver which proved to be a valid technology in those application scenarios where robustness and low power consumption are required. The energy harvesting features are performed by a nano-power boost charger buck converter which deals with the power extraction from the photovoltaic module, the LiPo battery charging/discharging management and the supply of the sensor node. Field tests demonstrate that under R:fr light source, the energy self-sufficiency of the system is achieved: a positive balance between the battery charge and discharge is measured, sufficient both for the node working operation and for the battery charging.\",\"PeriodicalId\":224327,\"journal\":{\"name\":\"2021 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS51076.2021.9530063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS51076.2021.9530063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文旨在展示基于lorawan的温度监测传感器节点的可行性,该传感器节点由多晶硅光伏模块自主供电,可能应用于园艺领域的物联网(loT)领域。商用太阳能电池在两种光源下进行了表征:传统的白色4000 K发光二极管(LED)和红色和远红色(R:FR)灯,峰值在655nm和730nm。该传感器节点配备了RFM95x LoRa收发器,该收发器在需要鲁棒性和低功耗的应用场景中被证明是一种有效的技术。能量收集功能由纳米功率升压充电器buck转换器完成,该转换器处理光伏组件的功率提取、LiPo电池充放电管理和传感器节点的供电。现场测试表明,在光源R:fr条件下,系统实现了能量自给,电池充放电达到正平衡,既满足节点工作运行,又满足电池充电。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polycrystalline silicon photovoltaic harvesting for indoor IoT systems under red- far red artificial light
This paper aims at demonstrating the feasibility of a LoRaWAN-based sensor node for temperature monitoring, autonomously powered by a polycrystalline silicon photovoltaic module with possible applications within the Internet of Things (loT) domain in the horticulture field. The commercial solar cell was characterized under two light sources: a conventional white 4000 K Light Emitting Diode (LED) and a red and far red (R:FR) lamp peaked at 655 nm and 730 nm. The sensor node is equipped with a RFM95x LoRa transceiver which proved to be a valid technology in those application scenarios where robustness and low power consumption are required. The energy harvesting features are performed by a nano-power boost charger buck converter which deals with the power extraction from the photovoltaic module, the LiPo battery charging/discharging management and the supply of the sensor node. Field tests demonstrate that under R:fr light source, the energy self-sufficiency of the system is achieved: a positive balance between the battery charge and discharge is measured, sufficient both for the node working operation and for the battery charging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信