基于BP神经网络的稀疏余弦调制滤波器组设计

W. Xu, Yi Li, Jinghong Miao, Jiaxiang Zhao
{"title":"基于BP神经网络的稀疏余弦调制滤波器组设计","authors":"W. Xu, Yi Li, Jinghong Miao, Jiaxiang Zhao","doi":"10.1145/3277453.3277460","DOIUrl":null,"url":null,"abstract":"This paper presents a design paradigm for sparse nearly perfect reconstruction cosine-modulated filter banks using BP neural network. Sparse FIR filter banks have lower implementation complexity than full filter banks with keeping a good performance level. First, a series of frequency response data satisfying perfect reconstruction condition are being selected. Second, the desired sparse linear phase FIR prototype filter is derived through the orthogonal matching pursuit performed under the weighted l2 norm, and the training function and hidden layer nodes in BP neural network. The simulation results fully testified the proposed scheme for the design sparse NPR cosine-modulated filter banks is reviewed.","PeriodicalId":186835,"journal":{"name":"Proceedings of the 2018 International Conference on Electronics and Electrical Engineering Technology","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Sparse Cosine-Modulated Filter Banks Using BP Neural Network\",\"authors\":\"W. Xu, Yi Li, Jinghong Miao, Jiaxiang Zhao\",\"doi\":\"10.1145/3277453.3277460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a design paradigm for sparse nearly perfect reconstruction cosine-modulated filter banks using BP neural network. Sparse FIR filter banks have lower implementation complexity than full filter banks with keeping a good performance level. First, a series of frequency response data satisfying perfect reconstruction condition are being selected. Second, the desired sparse linear phase FIR prototype filter is derived through the orthogonal matching pursuit performed under the weighted l2 norm, and the training function and hidden layer nodes in BP neural network. The simulation results fully testified the proposed scheme for the design sparse NPR cosine-modulated filter banks is reviewed.\",\"PeriodicalId\":186835,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Electronics and Electrical Engineering Technology\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Electronics and Electrical Engineering Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3277453.3277460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Electronics and Electrical Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3277453.3277460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于BP神经网络的稀疏近完美重构余弦调制滤波器组的设计范例。稀疏FIR滤波器组比全滤波器组具有更低的实现复杂度,并能保持良好的性能水平。首先,选取一系列满足完全重构条件的频响数据。其次,通过加权l2范数下的正交匹配追踪,结合BP神经网络的训练函数和隐层节点,推导出期望的稀疏线性相位FIR原型滤波器;仿真结果充分证明了所提出的稀疏NPR余弦调制滤波器组设计方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Sparse Cosine-Modulated Filter Banks Using BP Neural Network
This paper presents a design paradigm for sparse nearly perfect reconstruction cosine-modulated filter banks using BP neural network. Sparse FIR filter banks have lower implementation complexity than full filter banks with keeping a good performance level. First, a series of frequency response data satisfying perfect reconstruction condition are being selected. Second, the desired sparse linear phase FIR prototype filter is derived through the orthogonal matching pursuit performed under the weighted l2 norm, and the training function and hidden layer nodes in BP neural network. The simulation results fully testified the proposed scheme for the design sparse NPR cosine-modulated filter banks is reviewed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信