基于tsa树的时间序列精确分类方法

Xiaoxu He, C. Shao
{"title":"基于tsa树的时间序列精确分类方法","authors":"Xiaoxu He, C. Shao","doi":"10.1109/CCIS.2012.6664321","DOIUrl":null,"url":null,"abstract":"In order to improve the performance of time series classification, we introduce a new approach of time series classification. The first step of the approach is to design a feature exaction model based on Trend and Surprise Abstraction tree (TSA-tree). The second step of the approach is to combine the exacted global feature and 1 nearest neighbor to classify time series. The proposed approach is compared with a number of known classifiers by experiments in artificial and real-world data sets. The experimental results show it can reduce the error rates of time series classification, so it is highly competitive with previous approaches.","PeriodicalId":392558,"journal":{"name":"2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approach based on TSA-tree for accurate time series classification\",\"authors\":\"Xiaoxu He, C. Shao\",\"doi\":\"10.1109/CCIS.2012.6664321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the performance of time series classification, we introduce a new approach of time series classification. The first step of the approach is to design a feature exaction model based on Trend and Surprise Abstraction tree (TSA-tree). The second step of the approach is to combine the exacted global feature and 1 nearest neighbor to classify time series. The proposed approach is compared with a number of known classifiers by experiments in artificial and real-world data sets. The experimental results show it can reduce the error rates of time series classification, so it is highly competitive with previous approaches.\",\"PeriodicalId\":392558,\"journal\":{\"name\":\"2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIS.2012.6664321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS.2012.6664321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高时间序列分类的性能,提出了一种新的时间序列分类方法。该方法的第一步是设计基于趋势与惊喜抽象树(TSA-tree)的特征提取模型。该方法的第二步是将求出的全局特征与1个最近邻相结合对时间序列进行分类。通过人工和真实数据集的实验,将所提出的方法与许多已知的分类器进行了比较。实验结果表明,该方法可以降低时间序列分类的错误率,具有较强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approach based on TSA-tree for accurate time series classification
In order to improve the performance of time series classification, we introduce a new approach of time series classification. The first step of the approach is to design a feature exaction model based on Trend and Surprise Abstraction tree (TSA-tree). The second step of the approach is to combine the exacted global feature and 1 nearest neighbor to classify time series. The proposed approach is compared with a number of known classifiers by experiments in artificial and real-world data sets. The experimental results show it can reduce the error rates of time series classification, so it is highly competitive with previous approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信