比较不同深度学习主干在肺结节分割中的应用

R. Suji, W. Godfrey, J. Dhar
{"title":"比较不同深度学习主干在肺结节分割中的应用","authors":"R. Suji, W. Godfrey, J. Dhar","doi":"10.1109/CICT53865.2020.9672439","DOIUrl":null,"url":null,"abstract":"Deep Learning has made great impact on computer vision applications such as object detection, image classification, segmentation and localization. Computer based system for lung cancer detection and diagnosis helps in detecting the lung nodules and analysing the nodule features for further segmentation and classification. This paper explains the effect of UNet model on various back bone architectures pretrained on ImageNet dataset. This work was carried out on LIDC-IDRI dataset and the efficiency interms of IoU score and accuracy both in training and validation datasets are listed. Results show that EfficientNet backbone outperforms other backbone architectures.","PeriodicalId":265498,"journal":{"name":"2021 5th Conference on Information and Communication Technology (CICT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparing different deep learning backbones for segmentation of lung nodules\",\"authors\":\"R. Suji, W. Godfrey, J. Dhar\",\"doi\":\"10.1109/CICT53865.2020.9672439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Learning has made great impact on computer vision applications such as object detection, image classification, segmentation and localization. Computer based system for lung cancer detection and diagnosis helps in detecting the lung nodules and analysing the nodule features for further segmentation and classification. This paper explains the effect of UNet model on various back bone architectures pretrained on ImageNet dataset. This work was carried out on LIDC-IDRI dataset and the efficiency interms of IoU score and accuracy both in training and validation datasets are listed. Results show that EfficientNet backbone outperforms other backbone architectures.\",\"PeriodicalId\":265498,\"journal\":{\"name\":\"2021 5th Conference on Information and Communication Technology (CICT)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 5th Conference on Information and Communication Technology (CICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICT53865.2020.9672439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th Conference on Information and Communication Technology (CICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICT53865.2020.9672439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

深度学习对目标检测、图像分类、分割和定位等计算机视觉应用产生了重大影响。基于计算机的肺癌检测诊断系统有助于发现肺结节并分析结节的特征,以便进一步分割和分类。本文解释了UNet模型对ImageNet数据集预训练的各种脊骨结构的影响。本研究在LIDC-IDRI数据集上进行,列出了IoU评分和准确性在训练和验证数据集上的效率项。结果表明,高效网骨干网架构优于其他骨干网架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing different deep learning backbones for segmentation of lung nodules
Deep Learning has made great impact on computer vision applications such as object detection, image classification, segmentation and localization. Computer based system for lung cancer detection and diagnosis helps in detecting the lung nodules and analysing the nodule features for further segmentation and classification. This paper explains the effect of UNet model on various back bone architectures pretrained on ImageNet dataset. This work was carried out on LIDC-IDRI dataset and the efficiency interms of IoU score and accuracy both in training and validation datasets are listed. Results show that EfficientNet backbone outperforms other backbone architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信