基于深度学习的自动问答机器人个性化产品推荐模型

J. Robotics Pub Date : 2022-03-22 DOI:10.1155/2022/1256083
Jie Peng, Jianhui Xu
{"title":"基于深度学习的自动问答机器人个性化产品推荐模型","authors":"Jie Peng, Jianhui Xu","doi":"10.1155/2022/1256083","DOIUrl":null,"url":null,"abstract":"The collaborative filtering algorithm widely used in recommendation systems has problems with the sparsity of scoring data and the cold start of new products. A personalized product recommendation model for automated question-answering robots using deep learning is proposed. First, a personalized attention mechanism at the word level and the comment level is proposed, and the comments and users are individually coded. Then, the bidirectional gated recurrent unit (Bi-GRU) is used to construct the score prediction matrix, and through the dynamic collaborative filtering algorithm to integrate the time characteristics of the user’s interest changes. Finally, the feature codes of the users and products are input into the Bi-GRU model for learning, so as to output the recommendation list of personalized products of the automated question answering robot. Experimental results based on the JD and Tianchi datasets show that the training loss of the proposed model is lower than 45 and 23, respectively. And HR@15 and MRR@15 exceed 48 and 15, respectively, which are better than other comparison models. It can better adapt to the actual needs of automatic question-answering robots.","PeriodicalId":186435,"journal":{"name":"J. Robotics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Personalized Product Recommendation Model of Automatic Question Answering Robot Based on Deep Learning\",\"authors\":\"Jie Peng, Jianhui Xu\",\"doi\":\"10.1155/2022/1256083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The collaborative filtering algorithm widely used in recommendation systems has problems with the sparsity of scoring data and the cold start of new products. A personalized product recommendation model for automated question-answering robots using deep learning is proposed. First, a personalized attention mechanism at the word level and the comment level is proposed, and the comments and users are individually coded. Then, the bidirectional gated recurrent unit (Bi-GRU) is used to construct the score prediction matrix, and through the dynamic collaborative filtering algorithm to integrate the time characteristics of the user’s interest changes. Finally, the feature codes of the users and products are input into the Bi-GRU model for learning, so as to output the recommendation list of personalized products of the automated question answering robot. Experimental results based on the JD and Tianchi datasets show that the training loss of the proposed model is lower than 45 and 23, respectively. And HR@15 and MRR@15 exceed 48 and 15, respectively, which are better than other comparison models. It can better adapt to the actual needs of automatic question-answering robots.\",\"PeriodicalId\":186435,\"journal\":{\"name\":\"J. Robotics\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/1256083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/1256083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在推荐系统中广泛应用的协同过滤算法存在评分数据稀疏性和新产品冷启动等问题。提出了一种基于深度学习的自动问答机器人个性化产品推荐模型。首先,提出了词级和评论级的个性化关注机制,并对评论和用户进行了单独编码。然后,利用双向门控循环单元(Bi-GRU)构建分数预测矩阵,并通过动态协同过滤算法整合用户兴趣变化的时间特征。最后将用户和产品的特征码输入到Bi-GRU模型中进行学习,从而输出自动问答机器人的个性化产品推荐列表。基于JD和天池数据集的实验结果表明,所提模型的训练损失分别小于45和23。HR@15和MRR@15分别超过48和15,优于其他比较模型。它可以更好地适应自动问答机器人的实际需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personalized Product Recommendation Model of Automatic Question Answering Robot Based on Deep Learning
The collaborative filtering algorithm widely used in recommendation systems has problems with the sparsity of scoring data and the cold start of new products. A personalized product recommendation model for automated question-answering robots using deep learning is proposed. First, a personalized attention mechanism at the word level and the comment level is proposed, and the comments and users are individually coded. Then, the bidirectional gated recurrent unit (Bi-GRU) is used to construct the score prediction matrix, and through the dynamic collaborative filtering algorithm to integrate the time characteristics of the user’s interest changes. Finally, the feature codes of the users and products are input into the Bi-GRU model for learning, so as to output the recommendation list of personalized products of the automated question answering robot. Experimental results based on the JD and Tianchi datasets show that the training loss of the proposed model is lower than 45 and 23, respectively. And HR@15 and MRR@15 exceed 48 and 15, respectively, which are better than other comparison models. It can better adapt to the actual needs of automatic question-answering robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信