基于粗糙集理论的小波包诊断系统

Yingkai Sun, Hai Chen
{"title":"基于粗糙集理论的小波包诊断系统","authors":"Yingkai Sun, Hai Chen","doi":"10.1109/ICACI.2012.6463164","DOIUrl":null,"url":null,"abstract":"The wavelet packet analysis was adopted in acquisition of fault diagnosis system's characteristic parameter. The application of rough set theory in parameter's attribute optimization was explored. The unnecessary attributes were eliminated with reduction algorithm. The inner redundancy of fault diagnosis system's condition attributes is revealed. The complexity of neural network's structure is also decreased. The result of attribute reduction is given finally.","PeriodicalId":404759,"journal":{"name":"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A wavelet packet diagnosis system based on rough set theory\",\"authors\":\"Yingkai Sun, Hai Chen\",\"doi\":\"10.1109/ICACI.2012.6463164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The wavelet packet analysis was adopted in acquisition of fault diagnosis system's characteristic parameter. The application of rough set theory in parameter's attribute optimization was explored. The unnecessary attributes were eliminated with reduction algorithm. The inner redundancy of fault diagnosis system's condition attributes is revealed. The complexity of neural network's structure is also decreased. The result of attribute reduction is given finally.\",\"PeriodicalId\":404759,\"journal\":{\"name\":\"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2012.6463164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2012.6463164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用小波包分析方法获取故障诊断系统的特征参数。探讨了粗糙集理论在参数属性优化中的应用。采用约简算法剔除不需要的属性。揭示了故障诊断系统状态属性的内在冗余性。同时也降低了神经网络结构的复杂性。最后给出了属性约简的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A wavelet packet diagnosis system based on rough set theory
The wavelet packet analysis was adopted in acquisition of fault diagnosis system's characteristic parameter. The application of rough set theory in parameter's attribute optimization was explored. The unnecessary attributes were eliminated with reduction algorithm. The inner redundancy of fault diagnosis system's condition attributes is revealed. The complexity of neural network's structure is also decreased. The result of attribute reduction is given finally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信