预测打开信号的预期灰度统计

W. Costa, R. Haralick
{"title":"预测打开信号的预期灰度统计","authors":"W. Costa, R. Haralick","doi":"10.1109/CVPR.1992.223136","DOIUrl":null,"url":null,"abstract":"The opening of a model signal with a convex, zero-height structuring element is studied empirically. Experiments are performed in which the input signal model parameters and the opening length are varied over an acceptable range and the corresponding grey level distributions in the opened signal are fit to Pearson distributions. Regressions are then used to relate the Pearson distribution parameters to the input parameters, resulting in equations that may be used to predict the effect of an opening. Characterization experiments show that the maximum absolute errors between actual and predicted cumulative distributions using these regression equations have a mean of 0.036 and a standard deviation of 0.011 (for a range of zero to one); the worst-case maximum absolute error encountered between the cumulative distributions is 0.066.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Predicting expected gray level statistics of opened signals\",\"authors\":\"W. Costa, R. Haralick\",\"doi\":\"10.1109/CVPR.1992.223136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The opening of a model signal with a convex, zero-height structuring element is studied empirically. Experiments are performed in which the input signal model parameters and the opening length are varied over an acceptable range and the corresponding grey level distributions in the opened signal are fit to Pearson distributions. Regressions are then used to relate the Pearson distribution parameters to the input parameters, resulting in equations that may be used to predict the effect of an opening. Characterization experiments show that the maximum absolute errors between actual and predicted cumulative distributions using these regression equations have a mean of 0.036 and a standard deviation of 0.011 (for a range of zero to one); the worst-case maximum absolute error encountered between the cumulative distributions is 0.066.<<ETX>>\",\"PeriodicalId\":325476,\"journal\":{\"name\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1992.223136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

对带有凸的零高度结构单元的模型信号的开度进行了实证研究。实验中,输入信号模型参数和开放长度在一个可接受的范围内变化,开放信号中相应的灰度分布符合Pearson分布。然后使用回归来将皮尔逊分布参数与输入参数联系起来,从而产生可用于预测打开效果的方程。表征实验表明,使用这些回归方程的实际累积分布与预测累积分布之间的最大绝对误差均值为0.036,标准差为0.011(范围为0到1);在累积分布之间遇到的最坏情况最大绝对误差为0.066。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting expected gray level statistics of opened signals
The opening of a model signal with a convex, zero-height structuring element is studied empirically. Experiments are performed in which the input signal model parameters and the opening length are varied over an acceptable range and the corresponding grey level distributions in the opened signal are fit to Pearson distributions. Regressions are then used to relate the Pearson distribution parameters to the input parameters, resulting in equations that may be used to predict the effect of an opening. Characterization experiments show that the maximum absolute errors between actual and predicted cumulative distributions using these regression equations have a mean of 0.036 and a standard deviation of 0.011 (for a range of zero to one); the worst-case maximum absolute error encountered between the cumulative distributions is 0.066.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信