S. Zybin, W. Goddard III, Peng Xu, Joanne Budzien, A. Thompson
{"title":"未来力不敏感弹药用含能材料的冲击和剪切诱导化学反应分子动力学","authors":"S. Zybin, W. Goddard III, Peng Xu, Joanne Budzien, A. Thompson","doi":"10.1109/HPCMP-UGC.2009.39","DOIUrl":null,"url":null,"abstract":"We report an approach to large-scale atomistic simulations of chemical initiation processes in shocked energetic materials based on parallel implementation of the ReaxFF reactive force field. Here, we present results of reactive molecular dynamics (MD) simulations of shocked Pentaerythritol Tetranitrate (PETN) single crystal, a conventional high explosive. We study a planar wall impact to compare mechanical and chemical response at different speeds. The dominant initiation reactions in both systems lead to the formation of NO2. The lagging secondary reactions lead to a formation of water, nitrogen, and other products. By tracking the position of the shock front as a function of time, we have been able to observe how the shock velocity changes in response to the storage and release of chemical energy behind the shock front. We also investigate the effect of shear along different slip systems on chemical initiation. All calculations are performed with massively parallel MD code GRASP enabling multi-million atom reactive MD simulations of chemical processes in many important stockpile materials.","PeriodicalId":268639,"journal":{"name":"2009 DoD High Performance Computing Modernization Program Users Group Conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reactive Molecular Dynamics of Shock- and Shear-Induced Chemistry in Energetic Materials for Future Force Insensitive Munitions\",\"authors\":\"S. Zybin, W. Goddard III, Peng Xu, Joanne Budzien, A. Thompson\",\"doi\":\"10.1109/HPCMP-UGC.2009.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report an approach to large-scale atomistic simulations of chemical initiation processes in shocked energetic materials based on parallel implementation of the ReaxFF reactive force field. Here, we present results of reactive molecular dynamics (MD) simulations of shocked Pentaerythritol Tetranitrate (PETN) single crystal, a conventional high explosive. We study a planar wall impact to compare mechanical and chemical response at different speeds. The dominant initiation reactions in both systems lead to the formation of NO2. The lagging secondary reactions lead to a formation of water, nitrogen, and other products. By tracking the position of the shock front as a function of time, we have been able to observe how the shock velocity changes in response to the storage and release of chemical energy behind the shock front. We also investigate the effect of shear along different slip systems on chemical initiation. All calculations are performed with massively parallel MD code GRASP enabling multi-million atom reactive MD simulations of chemical processes in many important stockpile materials.\",\"PeriodicalId\":268639,\"journal\":{\"name\":\"2009 DoD High Performance Computing Modernization Program Users Group Conference\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 DoD High Performance Computing Modernization Program Users Group Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCMP-UGC.2009.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 DoD High Performance Computing Modernization Program Users Group Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCMP-UGC.2009.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reactive Molecular Dynamics of Shock- and Shear-Induced Chemistry in Energetic Materials for Future Force Insensitive Munitions
We report an approach to large-scale atomistic simulations of chemical initiation processes in shocked energetic materials based on parallel implementation of the ReaxFF reactive force field. Here, we present results of reactive molecular dynamics (MD) simulations of shocked Pentaerythritol Tetranitrate (PETN) single crystal, a conventional high explosive. We study a planar wall impact to compare mechanical and chemical response at different speeds. The dominant initiation reactions in both systems lead to the formation of NO2. The lagging secondary reactions lead to a formation of water, nitrogen, and other products. By tracking the position of the shock front as a function of time, we have been able to observe how the shock velocity changes in response to the storage and release of chemical energy behind the shock front. We also investigate the effect of shear along different slip systems on chemical initiation. All calculations are performed with massively parallel MD code GRASP enabling multi-million atom reactive MD simulations of chemical processes in many important stockpile materials.