部分信息下的动态网络安全部署

G. Theodorakopoulos, J. Baras, J. Le Boudec
{"title":"部分信息下的动态网络安全部署","authors":"G. Theodorakopoulos, J. Baras, J. Le Boudec","doi":"10.1109/ALLERTON.2008.4797565","DOIUrl":null,"url":null,"abstract":"A network user's decision to start and continue using security products is based on economic considerations. The cost of a security compromise (e.g., worm infection) is compared against the cost of deploying and maintaining a sufficient level of security. These costs are not necessarily the real ones, but rather the perceived costs, which depend on the amount of information available to a user at each time. Moreover, the costs (whether real or perceived) depend on the decisions of other users, too: The probability of a user getting infected depends on the security deployed by all the other users. In this paper, we combine an epidemic model for malware propagation in a network with a game theoretic model of the users' decisions to deploy security or not. Users can dynamically change their decision in order to maximize their currently perceived utility. We study the equilibrium points, and their dependence on the speed of the learning process through which the users learn the state of the network. We find that the faster the learning process, the higher the total network cost.","PeriodicalId":120561,"journal":{"name":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Dynamic network security deployment under partial information\",\"authors\":\"G. Theodorakopoulos, J. Baras, J. Le Boudec\",\"doi\":\"10.1109/ALLERTON.2008.4797565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A network user's decision to start and continue using security products is based on economic considerations. The cost of a security compromise (e.g., worm infection) is compared against the cost of deploying and maintaining a sufficient level of security. These costs are not necessarily the real ones, but rather the perceived costs, which depend on the amount of information available to a user at each time. Moreover, the costs (whether real or perceived) depend on the decisions of other users, too: The probability of a user getting infected depends on the security deployed by all the other users. In this paper, we combine an epidemic model for malware propagation in a network with a game theoretic model of the users' decisions to deploy security or not. Users can dynamically change their decision in order to maximize their currently perceived utility. We study the equilibrium points, and their dependence on the speed of the learning process through which the users learn the state of the network. We find that the faster the learning process, the higher the total network cost.\",\"PeriodicalId\":120561,\"journal\":{\"name\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2008.4797565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2008.4797565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

网络用户决定开始和继续使用安全产品是基于经济考虑。将安全危害(例如蠕虫感染)的成本与部署和维护足够安全级别的成本进行比较。这些成本不一定是实际成本,而是感知成本,这取决于用户每次可获得的信息量。此外,成本(无论是实际成本还是感知成本)也取决于其他用户的决策:用户被感染的概率取决于所有其他用户部署的安全性。在本文中,我们将恶意软件在网络中传播的流行模型与用户是否部署安全决策的博弈论模型相结合。用户可以动态地改变他们的决定,以最大化他们当前的感知效用。我们研究了平衡点,以及它们对学习过程速度的依赖,用户通过学习过程学习网络的状态。我们发现学习过程越快,网络总成本越高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic network security deployment under partial information
A network user's decision to start and continue using security products is based on economic considerations. The cost of a security compromise (e.g., worm infection) is compared against the cost of deploying and maintaining a sufficient level of security. These costs are not necessarily the real ones, but rather the perceived costs, which depend on the amount of information available to a user at each time. Moreover, the costs (whether real or perceived) depend on the decisions of other users, too: The probability of a user getting infected depends on the security deployed by all the other users. In this paper, we combine an epidemic model for malware propagation in a network with a game theoretic model of the users' decisions to deploy security or not. Users can dynamically change their decision in order to maximize their currently perceived utility. We study the equilibrium points, and their dependence on the speed of the learning process through which the users learn the state of the network. We find that the faster the learning process, the higher the total network cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信