用于流形上运动分析的时空连续小波

J. Leduc, J. R. Corbett
{"title":"用于流形上运动分析的时空连续小波","authors":"J. Leduc, J. R. Corbett","doi":"10.1109/TFSA.1998.721360","DOIUrl":null,"url":null,"abstract":"This paper presents kinematical Lie algebras and Lie groups that describe motion on differentiable spatiotemporal manifolds. Motion is assumed to be translational and rotational with position, velocity and acceleration. The general kinematical groups that are derived have action that depends up the local chart and the local curvature. Squared integrable representations of these Lie groups define continuous wavelet transforms. General conditions of admissibility are presented with an example on space of constant curvature. The wavelet construction matches perfectly to differential geometry \"a la Cartan\" and mechanics on manifolds. Applications concern optimum control, general relativity and quantum mechanics.","PeriodicalId":395542,"journal":{"name":"Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spatio-temporal continuous wavelets for the analysis of motion on manifolds\",\"authors\":\"J. Leduc, J. R. Corbett\",\"doi\":\"10.1109/TFSA.1998.721360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents kinematical Lie algebras and Lie groups that describe motion on differentiable spatiotemporal manifolds. Motion is assumed to be translational and rotational with position, velocity and acceleration. The general kinematical groups that are derived have action that depends up the local chart and the local curvature. Squared integrable representations of these Lie groups define continuous wavelet transforms. General conditions of admissibility are presented with an example on space of constant curvature. The wavelet construction matches perfectly to differential geometry \\\"a la Cartan\\\" and mechanics on manifolds. Applications concern optimum control, general relativity and quantum mechanics.\",\"PeriodicalId\":395542,\"journal\":{\"name\":\"Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TFSA.1998.721360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TFSA.1998.721360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文给出了描述可微时空流形上运动的运动学李代数和李群。假定运动是平移和旋转的,有位置、速度和加速度。导出的一般运动学群的作用依赖于局部图和局部曲率。这些李群的平方可积表示定义了连续小波变换。给出了常曲率空间的可容许性的一般条件。小波结构与微分几何“a la Cartan”和流形上的力学完美匹配。应用涉及最优控制、广义相对论和量子力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-temporal continuous wavelets for the analysis of motion on manifolds
This paper presents kinematical Lie algebras and Lie groups that describe motion on differentiable spatiotemporal manifolds. Motion is assumed to be translational and rotational with position, velocity and acceleration. The general kinematical groups that are derived have action that depends up the local chart and the local curvature. Squared integrable representations of these Lie groups define continuous wavelet transforms. General conditions of admissibility are presented with an example on space of constant curvature. The wavelet construction matches perfectly to differential geometry "a la Cartan" and mechanics on manifolds. Applications concern optimum control, general relativity and quantum mechanics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信