音乐体裁自动分类的元分类器比较

V. Y. Shinohara, J. Foleiss, T. Tavares
{"title":"音乐体裁自动分类的元分类器比较","authors":"V. Y. Shinohara, J. Foleiss, T. Tavares","doi":"10.5753/sbcm.2019.10434","DOIUrl":null,"url":null,"abstract":"Automatic music genre classification is the problem of associating mutually-exclusive labels to audio tracks. This process fosters the organization of collections and facilitates searching and marketing music. One approach for automatic music genre classification is to use diverse vector representations for each track, and then classify them individually. After that, a majority voting system can be used to infer a single label to the whole track. In this work, we evaluated the impact of changing the majority voting system to a meta-classifier. The classification results with the meta-classifier showed statistically significant improvements when related to the majority-voting classifier. This indicates that the higher-level information used by the meta-classifier might be relevant for automatic music genre classification.","PeriodicalId":338771,"journal":{"name":"Anais do Simpósio Brasileiro de Computação Musical (SBCM 2019)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Comparing Meta-Classifiers for Automatic Music Genre Classification\",\"authors\":\"V. Y. Shinohara, J. Foleiss, T. Tavares\",\"doi\":\"10.5753/sbcm.2019.10434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic music genre classification is the problem of associating mutually-exclusive labels to audio tracks. This process fosters the organization of collections and facilitates searching and marketing music. One approach for automatic music genre classification is to use diverse vector representations for each track, and then classify them individually. After that, a majority voting system can be used to infer a single label to the whole track. In this work, we evaluated the impact of changing the majority voting system to a meta-classifier. The classification results with the meta-classifier showed statistically significant improvements when related to the majority-voting classifier. This indicates that the higher-level information used by the meta-classifier might be relevant for automatic music genre classification.\",\"PeriodicalId\":338771,\"journal\":{\"name\":\"Anais do Simpósio Brasileiro de Computação Musical (SBCM 2019)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do Simpósio Brasileiro de Computação Musical (SBCM 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcm.2019.10434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Simpósio Brasileiro de Computação Musical (SBCM 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcm.2019.10434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

自动音乐类型分类是将互斥标签与音轨相关联的问题。这个过程促进了收藏的组织,促进了音乐的搜索和营销。自动音乐类型分类的一种方法是对每首曲目使用不同的向量表示,然后分别对它们进行分类。之后,可以使用多数投票系统来推断整个轨道的单个标签。在这项工作中,我们评估了将多数投票系统更改为元分类器的影响。当与多数投票分类器相关时,元分类器的分类结果在统计上显着改善。这表明元分类器使用的高级信息可能与自动音乐类型分类相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing Meta-Classifiers for Automatic Music Genre Classification
Automatic music genre classification is the problem of associating mutually-exclusive labels to audio tracks. This process fosters the organization of collections and facilitates searching and marketing music. One approach for automatic music genre classification is to use diverse vector representations for each track, and then classify them individually. After that, a majority voting system can be used to infer a single label to the whole track. In this work, we evaluated the impact of changing the majority voting system to a meta-classifier. The classification results with the meta-classifier showed statistically significant improvements when related to the majority-voting classifier. This indicates that the higher-level information used by the meta-classifier might be relevant for automatic music genre classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信