基于屋顶线的Intel CnC分布式矩阵乘法性能估计

Martin Kong, L. Pouchet, P. Sadayappan
{"title":"基于屋顶线的Intel CnC分布式矩阵乘法性能估计","authors":"Martin Kong, L. Pouchet, P. Sadayappan","doi":"10.1109/IPDPSW.2015.134","DOIUrl":null,"url":null,"abstract":"In this paper we show how to analytically model two widely used distributed matrix-multiply algorithms, Cannon's 2D and Johnson's 3D, implemented within the Intel Concurrent Collections framework for shared/distributed memory execution. Our precise analytical model proceeds by estimating the computation time and communication times, taking into account factors such as the block size, communication bandwidth, processor's peak performance, etc. It then applies a roofline-based approach to determine the running time based on communication/computation bottleneck estimation. Our models are validated by comparing the estimations to the measured run times varying the problem size and work distribution, showing only marginal differences. We conclude by using our model to perform a predictive analysis on the impact of improving the computation speed by a factor of 4×.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Roofline-Based Performance Estimator for Distributed Matrix-Multiply on Intel CnC\",\"authors\":\"Martin Kong, L. Pouchet, P. Sadayappan\",\"doi\":\"10.1109/IPDPSW.2015.134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we show how to analytically model two widely used distributed matrix-multiply algorithms, Cannon's 2D and Johnson's 3D, implemented within the Intel Concurrent Collections framework for shared/distributed memory execution. Our precise analytical model proceeds by estimating the computation time and communication times, taking into account factors such as the block size, communication bandwidth, processor's peak performance, etc. It then applies a roofline-based approach to determine the running time based on communication/computation bottleneck estimation. Our models are validated by comparing the estimations to the measured run times varying the problem size and work distribution, showing only marginal differences. We conclude by using our model to perform a predictive analysis on the impact of improving the computation speed by a factor of 4×.\",\"PeriodicalId\":340697,\"journal\":{\"name\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2015.134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们展示了如何解析建模两种广泛使用的分布式矩阵乘法算法,Cannon's 2D和Johnson's 3D,这两种算法在英特尔并发集合框架中实现,用于共享/分布式内存执行。我们的精确分析模型是通过估计计算时间和通信次数来进行的,考虑了诸如块大小、通信带宽、处理器峰值性能等因素。然后,它应用基于屋顶线的方法来确定基于通信/计算瓶颈估计的运行时间。通过将估计值与测量的运行时间进行比较来验证我们的模型,从而改变问题大小和工作分布,只显示出微小的差异。最后,我们使用我们的模型对计算速度提高4倍的影响进行了预测分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Roofline-Based Performance Estimator for Distributed Matrix-Multiply on Intel CnC
In this paper we show how to analytically model two widely used distributed matrix-multiply algorithms, Cannon's 2D and Johnson's 3D, implemented within the Intel Concurrent Collections framework for shared/distributed memory execution. Our precise analytical model proceeds by estimating the computation time and communication times, taking into account factors such as the block size, communication bandwidth, processor's peak performance, etc. It then applies a roofline-based approach to determine the running time based on communication/computation bottleneck estimation. Our models are validated by comparing the estimations to the measured run times varying the problem size and work distribution, showing only marginal differences. We conclude by using our model to perform a predictive analysis on the impact of improving the computation speed by a factor of 4×.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信