基于多种群进化策略的正交编码信号群优化

Wang Jing, Luo Feng, Wu Shunjun, Fu Shaofeng
{"title":"基于多种群进化策略的正交编码信号群优化","authors":"Wang Jing, Luo Feng, Wu Shunjun, Fu Shaofeng","doi":"10.1109/YCICT.2009.5382446","DOIUrl":null,"url":null,"abstract":"An improved genetic algorithm based on multiple population evolving is presented and applied to the optimization of orthogonal coded signal group for MIMO radar systems. According to the fitness of individuals, the population is divided into three groups and different evolving strategies are applied to every sub-population. The inosculation to all sub-population is actualized. This algorithm can strengthen and preserve the diversity of population. Meanwhile it can enhance the constringency speed and overcome the precocity of GA. Simulation results show that the improved genetic algorithm is effective and the optimized signal can used in MIMO radar.","PeriodicalId":138803,"journal":{"name":"2009 IEEE Youth Conference on Information, Computing and Telecommunication","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The optimization of orthogonal coded signal group based on multiple population evolving strategies\",\"authors\":\"Wang Jing, Luo Feng, Wu Shunjun, Fu Shaofeng\",\"doi\":\"10.1109/YCICT.2009.5382446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An improved genetic algorithm based on multiple population evolving is presented and applied to the optimization of orthogonal coded signal group for MIMO radar systems. According to the fitness of individuals, the population is divided into three groups and different evolving strategies are applied to every sub-population. The inosculation to all sub-population is actualized. This algorithm can strengthen and preserve the diversity of population. Meanwhile it can enhance the constringency speed and overcome the precocity of GA. Simulation results show that the improved genetic algorithm is effective and the optimized signal can used in MIMO radar.\",\"PeriodicalId\":138803,\"journal\":{\"name\":\"2009 IEEE Youth Conference on Information, Computing and Telecommunication\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Youth Conference on Information, Computing and Telecommunication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/YCICT.2009.5382446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Youth Conference on Information, Computing and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YCICT.2009.5382446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于多种群进化的改进遗传算法,并将其应用于MIMO雷达系统正交编码信号群的优化。根据个体的适应度将种群划分为3个群体,每个亚群体采用不同的进化策略。实现了对所有亚群的免疫接种。该算法可以增强和保持种群的多样性。同时提高了遗传算法的收敛速度,克服了遗传算法的早熟性。仿真结果表明,改进的遗传算法是有效的,优化后的信号可用于MIMO雷达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The optimization of orthogonal coded signal group based on multiple population evolving strategies
An improved genetic algorithm based on multiple population evolving is presented and applied to the optimization of orthogonal coded signal group for MIMO radar systems. According to the fitness of individuals, the population is divided into three groups and different evolving strategies are applied to every sub-population. The inosculation to all sub-population is actualized. This algorithm can strengthen and preserve the diversity of population. Meanwhile it can enhance the constringency speed and overcome the precocity of GA. Simulation results show that the improved genetic algorithm is effective and the optimized signal can used in MIMO radar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信