{"title":"压缩感知在无线传感器网络中的实现","authors":"Dongyu Cao, Kai Yu, Shuguo Zhuo, Y. Hu, Zhi Wang","doi":"10.1109/IoTDI.2015.14","DOIUrl":null,"url":null,"abstract":"Compressive sensing (CS) is applied to enable real time data transmission in a wireless sensor network by significantly reduce the local computation and sensor data volume that needs to be transmitted over wireless channels to a remote fusion center. By exploiting the sparse structure of commonly used signals in Wireless Sensor Network (WSN) applications, a Compressed Sensing on WSN (CS-WSN) framework is proposed. This is accomplished by (i) random sub-sampling of data collected at sensor node, (ii) transmitting only the sign-bit of the data samples over wireless channels. It is shown that this CS-WSN framework is capable of delivering similar performance as conventional local data compression method while greatly reduce the data volume and local computation. This proposed scheme is validated using a prototype wireless sensor network test bed. Preliminary experimental results clearly validate the superior performance of this proposed scheme.","PeriodicalId":135674,"journal":{"name":"2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On the Implementation of Compressive Sensing on Wireless Sensor Network\",\"authors\":\"Dongyu Cao, Kai Yu, Shuguo Zhuo, Y. Hu, Zhi Wang\",\"doi\":\"10.1109/IoTDI.2015.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive sensing (CS) is applied to enable real time data transmission in a wireless sensor network by significantly reduce the local computation and sensor data volume that needs to be transmitted over wireless channels to a remote fusion center. By exploiting the sparse structure of commonly used signals in Wireless Sensor Network (WSN) applications, a Compressed Sensing on WSN (CS-WSN) framework is proposed. This is accomplished by (i) random sub-sampling of data collected at sensor node, (ii) transmitting only the sign-bit of the data samples over wireless channels. It is shown that this CS-WSN framework is capable of delivering similar performance as conventional local data compression method while greatly reduce the data volume and local computation. This proposed scheme is validated using a prototype wireless sensor network test bed. Preliminary experimental results clearly validate the superior performance of this proposed scheme.\",\"PeriodicalId\":135674,\"journal\":{\"name\":\"2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IoTDI.2015.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IoTDI.2015.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Implementation of Compressive Sensing on Wireless Sensor Network
Compressive sensing (CS) is applied to enable real time data transmission in a wireless sensor network by significantly reduce the local computation and sensor data volume that needs to be transmitted over wireless channels to a remote fusion center. By exploiting the sparse structure of commonly used signals in Wireless Sensor Network (WSN) applications, a Compressed Sensing on WSN (CS-WSN) framework is proposed. This is accomplished by (i) random sub-sampling of data collected at sensor node, (ii) transmitting only the sign-bit of the data samples over wireless channels. It is shown that this CS-WSN framework is capable of delivering similar performance as conventional local data compression method while greatly reduce the data volume and local computation. This proposed scheme is validated using a prototype wireless sensor network test bed. Preliminary experimental results clearly validate the superior performance of this proposed scheme.