压缩感知在无线传感器网络中的实现

Dongyu Cao, Kai Yu, Shuguo Zhuo, Y. Hu, Zhi Wang
{"title":"压缩感知在无线传感器网络中的实现","authors":"Dongyu Cao, Kai Yu, Shuguo Zhuo, Y. Hu, Zhi Wang","doi":"10.1109/IoTDI.2015.14","DOIUrl":null,"url":null,"abstract":"Compressive sensing (CS) is applied to enable real time data transmission in a wireless sensor network by significantly reduce the local computation and sensor data volume that needs to be transmitted over wireless channels to a remote fusion center. By exploiting the sparse structure of commonly used signals in Wireless Sensor Network (WSN) applications, a Compressed Sensing on WSN (CS-WSN) framework is proposed. This is accomplished by (i) random sub-sampling of data collected at sensor node, (ii) transmitting only the sign-bit of the data samples over wireless channels. It is shown that this CS-WSN framework is capable of delivering similar performance as conventional local data compression method while greatly reduce the data volume and local computation. This proposed scheme is validated using a prototype wireless sensor network test bed. Preliminary experimental results clearly validate the superior performance of this proposed scheme.","PeriodicalId":135674,"journal":{"name":"2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On the Implementation of Compressive Sensing on Wireless Sensor Network\",\"authors\":\"Dongyu Cao, Kai Yu, Shuguo Zhuo, Y. Hu, Zhi Wang\",\"doi\":\"10.1109/IoTDI.2015.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive sensing (CS) is applied to enable real time data transmission in a wireless sensor network by significantly reduce the local computation and sensor data volume that needs to be transmitted over wireless channels to a remote fusion center. By exploiting the sparse structure of commonly used signals in Wireless Sensor Network (WSN) applications, a Compressed Sensing on WSN (CS-WSN) framework is proposed. This is accomplished by (i) random sub-sampling of data collected at sensor node, (ii) transmitting only the sign-bit of the data samples over wireless channels. It is shown that this CS-WSN framework is capable of delivering similar performance as conventional local data compression method while greatly reduce the data volume and local computation. This proposed scheme is validated using a prototype wireless sensor network test bed. Preliminary experimental results clearly validate the superior performance of this proposed scheme.\",\"PeriodicalId\":135674,\"journal\":{\"name\":\"2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IoTDI.2015.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IoTDI.2015.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

压缩感知(CS)通过显著减少需要通过无线信道传输到远程融合中心的本地计算和传感器数据量,实现无线传感器网络中的实时数据传输。利用无线传感器网络(WSN)应用中常用信号的稀疏结构,提出了一种基于无线传感器网络的压缩感知(CS-WSN)框架。这是通过(i)对传感器节点收集的数据进行随机子采样,(ii)在无线信道上仅传输数据样本的符号位来实现的。实验表明,该CS-WSN框架能够提供与传统局部数据压缩方法相似的性能,同时大大减少了数据量和局部计算量。该方案在无线传感器网络实验台上得到了验证。初步实验结果清楚地验证了该方案的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Implementation of Compressive Sensing on Wireless Sensor Network
Compressive sensing (CS) is applied to enable real time data transmission in a wireless sensor network by significantly reduce the local computation and sensor data volume that needs to be transmitted over wireless channels to a remote fusion center. By exploiting the sparse structure of commonly used signals in Wireless Sensor Network (WSN) applications, a Compressed Sensing on WSN (CS-WSN) framework is proposed. This is accomplished by (i) random sub-sampling of data collected at sensor node, (ii) transmitting only the sign-bit of the data samples over wireless channels. It is shown that this CS-WSN framework is capable of delivering similar performance as conventional local data compression method while greatly reduce the data volume and local computation. This proposed scheme is validated using a prototype wireless sensor network test bed. Preliminary experimental results clearly validate the superior performance of this proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信