语义框架和视觉场景:从图像和视频描述中学习语义角色清单

Ekaterina Shutova, Andreas Wundsam, H. Yannakoudakis
{"title":"语义框架和视觉场景:从图像和视频描述中学习语义角色清单","authors":"Ekaterina Shutova, Andreas Wundsam, H. Yannakoudakis","doi":"10.18653/v1/S17-1018","DOIUrl":null,"url":null,"abstract":"Frame-semantic parsing and semantic role labelling, that aim to automatically assign semantic roles to arguments of verbs in a sentence, have become an active strand of research in NLP. However, to date these methods have relied on a predefined inventory of semantic roles. In this paper, we present a method to automatically learn argument role inventories for verbs from large corpora of text, images and videos. We evaluate the method against manually constructed role inventories in FrameNet and show that the visual model outperforms the language-only model and operates with a high precision.","PeriodicalId":344435,"journal":{"name":"Joint Conference on Lexical and Computational Semantics","volume":"293 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Semantic Frames and Visual Scenes: Learning Semantic Role Inventories from Image and Video Descriptions\",\"authors\":\"Ekaterina Shutova, Andreas Wundsam, H. Yannakoudakis\",\"doi\":\"10.18653/v1/S17-1018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frame-semantic parsing and semantic role labelling, that aim to automatically assign semantic roles to arguments of verbs in a sentence, have become an active strand of research in NLP. However, to date these methods have relied on a predefined inventory of semantic roles. In this paper, we present a method to automatically learn argument role inventories for verbs from large corpora of text, images and videos. We evaluate the method against manually constructed role inventories in FrameNet and show that the visual model outperforms the language-only model and operates with a high precision.\",\"PeriodicalId\":344435,\"journal\":{\"name\":\"Joint Conference on Lexical and Computational Semantics\",\"volume\":\"293 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joint Conference on Lexical and Computational Semantics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/S17-1018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint Conference on Lexical and Computational Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/S17-1018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

框架语义分析和语义角色标注,旨在为句子中的动词参数自动分配语义角色,已成为自然语言处理领域的一个活跃研究方向。然而,迄今为止,这些方法依赖于预定义的语义角色清单。在本文中,我们提出了一种从文本、图像和视频的大型语料库中自动学习动词论点角色清单的方法。我们针对FrameNet中手动构建的角色清单对该方法进行了评估,并表明视觉模型优于纯语言模型,并且具有很高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Frames and Visual Scenes: Learning Semantic Role Inventories from Image and Video Descriptions
Frame-semantic parsing and semantic role labelling, that aim to automatically assign semantic roles to arguments of verbs in a sentence, have become an active strand of research in NLP. However, to date these methods have relied on a predefined inventory of semantic roles. In this paper, we present a method to automatically learn argument role inventories for verbs from large corpora of text, images and videos. We evaluate the method against manually constructed role inventories in FrameNet and show that the visual model outperforms the language-only model and operates with a high precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信