REPP-H:异构数据中心的功率和性能运行时估计

Rajiv Nishtala, X. Martorell, V. Petrucci, D. Mossé
{"title":"REPP-H:异构数据中心的功率和性能运行时估计","authors":"Rajiv Nishtala, X. Martorell, V. Petrucci, D. Mossé","doi":"10.1109/SBAC-PAD.2016.27","DOIUrl":null,"url":null,"abstract":"One of the main challenges in data center systems is operating under certain Quality of Service (QoS) while minimizing power consumption. Increasingly, data centers are adopting heterogeneous server architectures with different power-performance trade-offs. This requires careful understanding of the application behavior across multiple architectures at runtime so as to enable meeting specified power and performance requirements. In this work, we present and evaluate REPP-H (Runtime Estimation of Performance and Power on Heterogeneous data centers). REPP-H leverages hardware performance counters available on all major server architectures to ensure a highly responsive power capping mechanism and delivering a minimum performance in a single step. We experimentally show that REPP-H can successfully estimate power and performance of several single-threaded andmultiprogrammed workloads. The average errors on ARM, AMD and Intel architectures are, respectively, 7.1%, 9.0%, 7.1% when predicting performance, and 6.0%, 6.5%, 8.1% when predicting power on those heterogeneous servers.","PeriodicalId":361160,"journal":{"name":"2016 28th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"REPP-H: Runtime Estimation of Power and Performance on Heterogeneous Data Centers\",\"authors\":\"Rajiv Nishtala, X. Martorell, V. Petrucci, D. Mossé\",\"doi\":\"10.1109/SBAC-PAD.2016.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main challenges in data center systems is operating under certain Quality of Service (QoS) while minimizing power consumption. Increasingly, data centers are adopting heterogeneous server architectures with different power-performance trade-offs. This requires careful understanding of the application behavior across multiple architectures at runtime so as to enable meeting specified power and performance requirements. In this work, we present and evaluate REPP-H (Runtime Estimation of Performance and Power on Heterogeneous data centers). REPP-H leverages hardware performance counters available on all major server architectures to ensure a highly responsive power capping mechanism and delivering a minimum performance in a single step. We experimentally show that REPP-H can successfully estimate power and performance of several single-threaded andmultiprogrammed workloads. The average errors on ARM, AMD and Intel architectures are, respectively, 7.1%, 9.0%, 7.1% when predicting performance, and 6.0%, 6.5%, 8.1% when predicting power on those heterogeneous servers.\",\"PeriodicalId\":361160,\"journal\":{\"name\":\"2016 28th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 28th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PAD.2016.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 28th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD.2016.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数据中心系统面临的主要挑战之一是在一定的服务质量(QoS)下运行,同时最小化功耗。数据中心越来越多地采用具有不同功率性能权衡的异构服务器架构。这需要在运行时仔细理解跨多个体系结构的应用程序行为,以便能够满足指定的功率和性能需求。在这项工作中,我们提出并评估REPP-H(异构数据中心性能和功率运行时估计)。REPP-H利用所有主要服务器架构上可用的硬件性能计数器来确保高响应的功率封顶机制,并在单个步骤中提供最低性能。实验表明,REPP-H可以成功地估计多个单线程和多程序工作负载的功耗和性能。ARM、AMD和Intel架构在预测性能时的平均误差分别为7.1%、9.0%和7.1%,在这些异构服务器上预测功耗时的平均误差分别为6.0%、6.5%和8.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
REPP-H: Runtime Estimation of Power and Performance on Heterogeneous Data Centers
One of the main challenges in data center systems is operating under certain Quality of Service (QoS) while minimizing power consumption. Increasingly, data centers are adopting heterogeneous server architectures with different power-performance trade-offs. This requires careful understanding of the application behavior across multiple architectures at runtime so as to enable meeting specified power and performance requirements. In this work, we present and evaluate REPP-H (Runtime Estimation of Performance and Power on Heterogeneous data centers). REPP-H leverages hardware performance counters available on all major server architectures to ensure a highly responsive power capping mechanism and delivering a minimum performance in a single step. We experimentally show that REPP-H can successfully estimate power and performance of several single-threaded andmultiprogrammed workloads. The average errors on ARM, AMD and Intel architectures are, respectively, 7.1%, 9.0%, 7.1% when predicting performance, and 6.0%, 6.5%, 8.1% when predicting power on those heterogeneous servers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信