基于新鲜度和同步性的周期数据序列集成

K. Munakata, Masatoshi Yoshikawa, Shunsuke Uemura
{"title":"基于新鲜度和同步性的周期数据序列集成","authors":"K. Munakata, Masatoshi Yoshikawa, Shunsuke Uemura","doi":"10.1109/RIDE.2000.836499","DOIUrl":null,"url":null,"abstract":"Presents frameworks for acquiring data from servers that broadcast data periodically at constant intervals. We assume that different servers broadcast data for different periods at different intervals, and our focus is on choosing a fresh and synchronous combination of data, each obtained from a different server. We define an evaluation function to determine which data combination to use, taking into account both the freshness and the synchronousness of the data. Then we present a data acquisition framework for consecutive queries. For efficiency, the points of time that give the optimum data combinations are pre-computed. We show the pre-computation results can also be used for interactive queries which enable application programs to set limits on the data synchronousness and response time.","PeriodicalId":113544,"journal":{"name":"Proceedings Tenth International Workshop on Research Issues in Data Engineering. RIDE 2000","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Integrating periodic data sequences based on freshness and synchronousness\",\"authors\":\"K. Munakata, Masatoshi Yoshikawa, Shunsuke Uemura\",\"doi\":\"10.1109/RIDE.2000.836499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presents frameworks for acquiring data from servers that broadcast data periodically at constant intervals. We assume that different servers broadcast data for different periods at different intervals, and our focus is on choosing a fresh and synchronous combination of data, each obtained from a different server. We define an evaluation function to determine which data combination to use, taking into account both the freshness and the synchronousness of the data. Then we present a data acquisition framework for consecutive queries. For efficiency, the points of time that give the optimum data combinations are pre-computed. We show the pre-computation results can also be used for interactive queries which enable application programs to set limits on the data synchronousness and response time.\",\"PeriodicalId\":113544,\"journal\":{\"name\":\"Proceedings Tenth International Workshop on Research Issues in Data Engineering. RIDE 2000\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Tenth International Workshop on Research Issues in Data Engineering. RIDE 2000\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIDE.2000.836499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Tenth International Workshop on Research Issues in Data Engineering. RIDE 2000","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIDE.2000.836499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

介绍了从定期广播数据的服务器获取数据的框架。我们假设不同的服务器以不同的间隔在不同的时间段广播数据,我们的重点是选择数据的新鲜和同步组合,每个数据从不同的服务器获得。我们定义了一个评估函数来决定使用哪个数据组合,同时考虑到数据的新鲜度和同步性。然后,我们提出了一个连续查询的数据采集框架。为了提高效率,给出最佳数据组合的时间点是预先计算的。我们展示了预计算结果也可以用于交互式查询,使应用程序能够对数据同步性和响应时间设置限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating periodic data sequences based on freshness and synchronousness
Presents frameworks for acquiring data from servers that broadcast data periodically at constant intervals. We assume that different servers broadcast data for different periods at different intervals, and our focus is on choosing a fresh and synchronous combination of data, each obtained from a different server. We define an evaluation function to determine which data combination to use, taking into account both the freshness and the synchronousness of the data. Then we present a data acquisition framework for consecutive queries. For efficiency, the points of time that give the optimum data combinations are pre-computed. We show the pre-computation results can also be used for interactive queries which enable application programs to set limits on the data synchronousness and response time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信