车载网络视频分组的移动边缘缓存策略

R. Yang, Songtao Guo
{"title":"车载网络视频分组的移动边缘缓存策略","authors":"R. Yang, Songtao Guo","doi":"10.1109/ICACI52617.2021.9435871","DOIUrl":null,"url":null,"abstract":"With the continuous boom in video services and advanced computing, the requirements of mobile users for network resource and performance are rising steadily. Mobile edge computing (MEC) technology has been applied in vehicular networks (VNs) in recent years to cope with high vehicle mobility and network topology change. In this paper, we propose a group-partitioned video caching strategy algorithm (GPC) in VNs. The algorithm first partitions the video requesters and then employs the Lagrange function and Lambert function to solve the cache probability matrix as optimization variable. Correspondingly, we choose caching hit ratio and latency as cache performance evaluation metrics we take the revenue function as optimization objective, and aim to maximize the revenue value. Experimental results show that that the dual influence of video file size and cache size is a significant factor in the probability of caching. Our GPC algorithm outperforms other existing algorithms in the revenue.","PeriodicalId":382483,"journal":{"name":"2021 13th International Conference on Advanced Computational Intelligence (ICACI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Mobile Edge Caching Strategy for Video Grouping in Vehicular Networks\",\"authors\":\"R. Yang, Songtao Guo\",\"doi\":\"10.1109/ICACI52617.2021.9435871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the continuous boom in video services and advanced computing, the requirements of mobile users for network resource and performance are rising steadily. Mobile edge computing (MEC) technology has been applied in vehicular networks (VNs) in recent years to cope with high vehicle mobility and network topology change. In this paper, we propose a group-partitioned video caching strategy algorithm (GPC) in VNs. The algorithm first partitions the video requesters and then employs the Lagrange function and Lambert function to solve the cache probability matrix as optimization variable. Correspondingly, we choose caching hit ratio and latency as cache performance evaluation metrics we take the revenue function as optimization objective, and aim to maximize the revenue value. Experimental results show that that the dual influence of video file size and cache size is a significant factor in the probability of caching. Our GPC algorithm outperforms other existing algorithms in the revenue.\",\"PeriodicalId\":382483,\"journal\":{\"name\":\"2021 13th International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI52617.2021.9435871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI52617.2021.9435871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

随着视频业务和先进计算的不断蓬勃发展,移动用户对网络资源和性能的要求也在不断提高。移动边缘计算(MEC)技术近年来被应用于车载网络,以应对车辆的高移动性和网络拓扑的变化。本文提出了一种分组视频缓存策略算法(GPC)。该算法首先对视频请求者进行划分,然后采用拉格朗日函数和兰伯特函数求解缓存概率矩阵作为优化变量。相应地,我们选择缓存命中率和延迟作为缓存性能评价指标,以收益函数为优化目标,以收益价值最大化为目标。实验结果表明,视频文件大小和缓存大小的双重影响是影响缓存概率的重要因素。我们的GPC算法在收益方面优于其他现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mobile Edge Caching Strategy for Video Grouping in Vehicular Networks
With the continuous boom in video services and advanced computing, the requirements of mobile users for network resource and performance are rising steadily. Mobile edge computing (MEC) technology has been applied in vehicular networks (VNs) in recent years to cope with high vehicle mobility and network topology change. In this paper, we propose a group-partitioned video caching strategy algorithm (GPC) in VNs. The algorithm first partitions the video requesters and then employs the Lagrange function and Lambert function to solve the cache probability matrix as optimization variable. Correspondingly, we choose caching hit ratio and latency as cache performance evaluation metrics we take the revenue function as optimization objective, and aim to maximize the revenue value. Experimental results show that that the dual influence of video file size and cache size is a significant factor in the probability of caching. Our GPC algorithm outperforms other existing algorithms in the revenue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信