时域二次三角形和边缘上PO和EEC辐射积分的计算

Aslihan Aktepe, H. A. Ülkü
{"title":"时域二次三角形和边缘上PO和EEC辐射积分的计算","authors":"Aslihan Aktepe, H. A. Ülkü","doi":"10.1109/EMCTurkiye45372.2019.8976009","DOIUrl":null,"url":null,"abstract":"A scheme to evaluate the physical optics (PO) and equivalent edge currents (EEC) integrals exactly on quadratic triangles and edges, respectively, in time domain is presented. Using the Radon transform interpretation of the radiation integrals, the PO integral is evaluated exactly on the surface of the quadratic triangle using appropriate order Gauss-Legendre quadrature rule (GLQR) and the EEC integral is evaluated in closed-from on the edge of the quadratic triangle. A numerical example that shows the accuracy of the proposed scheme is presented.","PeriodicalId":152036,"journal":{"name":"2019 Fifth International Electromagnetic Compatibility Conference (EMC Turkiye)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of PO and EEC Radiation Integrals on Quadratic Triangles and Edges in Time Domain\",\"authors\":\"Aslihan Aktepe, H. A. Ülkü\",\"doi\":\"10.1109/EMCTurkiye45372.2019.8976009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A scheme to evaluate the physical optics (PO) and equivalent edge currents (EEC) integrals exactly on quadratic triangles and edges, respectively, in time domain is presented. Using the Radon transform interpretation of the radiation integrals, the PO integral is evaluated exactly on the surface of the quadratic triangle using appropriate order Gauss-Legendre quadrature rule (GLQR) and the EEC integral is evaluated in closed-from on the edge of the quadratic triangle. A numerical example that shows the accuracy of the proposed scheme is presented.\",\"PeriodicalId\":152036,\"journal\":{\"name\":\"2019 Fifth International Electromagnetic Compatibility Conference (EMC Turkiye)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Fifth International Electromagnetic Compatibility Conference (EMC Turkiye)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMCTurkiye45372.2019.8976009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Fifth International Electromagnetic Compatibility Conference (EMC Turkiye)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCTurkiye45372.2019.8976009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种在时域内精确计算二次三角形和边缘物理光学积分和等效边缘电流积分的方法。利用Radon变换解释辐射积分,利用适当阶高斯-勒让德正交规则(GLQR)在二次三角形表面精确求出PO积分,在二次三角形边缘封闭求出EEC积分。最后给出了一个数值算例,验证了该方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of PO and EEC Radiation Integrals on Quadratic Triangles and Edges in Time Domain
A scheme to evaluate the physical optics (PO) and equivalent edge currents (EEC) integrals exactly on quadratic triangles and edges, respectively, in time domain is presented. Using the Radon transform interpretation of the radiation integrals, the PO integral is evaluated exactly on the surface of the quadratic triangle using appropriate order Gauss-Legendre quadrature rule (GLQR) and the EEC integral is evaluated in closed-from on the edge of the quadratic triangle. A numerical example that shows the accuracy of the proposed scheme is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信